1 hr 18 min

Sommerfeld Theory Colloquium: Quantum Matter with Strong Correlations Sommerfeld Lecture Series (ASC)

    • Science

From copper-oxide superconductors to rare-earth compounds, materials with strong electronic correlations have focused enormous attention over the last two decades. Solid-state chemistry, new elaboration techniques and improved experimental probes are constantly providing us with examples of novel materials with surprising electronic properties, the latest example being the recent discovery of iron-based high-temperature superconductors.
In this colloquium, I will emphasize that the classic paradigm of solid-state physics, in which electrons form a gas of wave-like quasiparticles, must be seriously revised for strongly correlated materials. Instead, a description accounting for both atomic-like excitations in real-space and quasiparticle excitations in momentum space is requested. I will review how Dynamical Mean-Field Theory -an approach that has led to significant advances in our understanding of strongly correlated materials- fulfills this goal.
New frontiers are also opening up, which bring together condensed-matter physics and quantum optics. `Artificial materials' made of ultra-cold atoms trapped by laser beams can be engineered with a remarkable level of controllability, and allow for the study of strong- correlation physics in previously unexplored regimes.

From copper-oxide superconductors to rare-earth compounds, materials with strong electronic correlations have focused enormous attention over the last two decades. Solid-state chemistry, new elaboration techniques and improved experimental probes are constantly providing us with examples of novel materials with surprising electronic properties, the latest example being the recent discovery of iron-based high-temperature superconductors.
In this colloquium, I will emphasize that the classic paradigm of solid-state physics, in which electrons form a gas of wave-like quasiparticles, must be seriously revised for strongly correlated materials. Instead, a description accounting for both atomic-like excitations in real-space and quasiparticle excitations in momentum space is requested. I will review how Dynamical Mean-Field Theory -an approach that has led to significant advances in our understanding of strongly correlated materials- fulfills this goal.
New frontiers are also opening up, which bring together condensed-matter physics and quantum optics. `Artificial materials' made of ultra-cold atoms trapped by laser beams can be engineered with a remarkable level of controllability, and allow for the study of strong- correlation physics in previously unexplored regimes.

1 hr 18 min

Top Podcasts In Science

ShoSalfa? | شسالفة؟
Imane
TED Talks Science and Medicine
TED
StarTalk Radio
Neil deGrasse Tyson
بودكاست علمي جدا
Kerning Cultures Network
الأعمال الكاملة لـ د. مصطفى محمود
Podcast Record
Hidden Brain
Hidden Brain, Shankar Vedantam

More by Ludwig-Maximilians-Universität München

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 12/19
Ludwig-Maximilians-Universität München
GK Strafrecht II (A-K) SoSe 2020 Satzger
Helmut Satzger
NANO-BIO-PHYSICS SYMPOSIUM 07.09.2019 Day 2
Ludwig-Maximilians-Universität München
NANO-BIO-PHYSICS SYMPOSIUM 06.09.2019 Day 1
Ludwig-Maximilians-Universität München
Center for Advanced Studies (CAS) Research Focus Global Health
Center for Advanced Studies
The Wicked Mu
Stephan Kulla und Nils Hansen