Molecular biology of octocoral mitochondria Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

    • Educación

The mitochondria of non-bilaterian metazoans display a staggering diversity of genome organizations and also a slow rate of mtDNA evolution, unlike bilaterians, which may hold a key to understand the early evolution of the animal mitochondrion. Octocorals are unique members of Phylum Cnidaria, harboring several atypical mitochondrial genomic features, including a paucity of tRNA genes, various genome arrangements and the presence of novel putative mismatch repair gene (mtMutS) with various potential biological roles. Thus octocorals represents an interesting model for the study of mitochondrial biology and evolution. However, besides its utility in molecular phylogenetics, the mtDNA of octocorals is not studied from the perspective of DNA repair, oxidative stress response or gene expression; and there is a general lack of knowledge on the DNA repair capabilities and role of the mtMutS gene, response to climate-change, and mtDNA transcription in absence of interspersed tRNA genes of octocoral mitochondrial genome. In order to put the observed novelties in the octocoral mitochondria in an evolutionary and an environmental context, and to understand their potential functions and the consequences of their presence in conferring fitness during climate change induced stress, this study was undertaken. This dissertation aims to explore the uniqueness and diversity of octocoral mtDNA from an environmental as well as an evolutionary perspective.
The thesis comprises five chapters exploring various facets of octocoral biology. The introductory section provides basic information and elaborates on the importance of studying non-bilaterian mitochondria. The first chapter sets the base for subsequent gene expression studies. Octocorals are extensively studied from a taxonomic and phylogenetic point of view. However, gene expression studies on these organisms have only recently started to appear. To successfully employ the most commonly used gene expression profiling technique i.e., the quantitation real-time PCR (qPCR), it is necessary to have an experimentally validated, treatment-specific set of stably expressed reference genes that will support for the accurate quantification of changes in expression of genes of interest. Hence, seven housekeeping genes, known to exhibit constitutive expression, were investigated for expression stability during simulated climate-changed (i.e. thermal and low-pH) induced stress. These genes were validated and subsequently used in gene expression studies on Sinularia cf. cruciata, our model octocoral.
The occurrence of a mismatch repair gene, and the slow rates of mtDNA evolution in octocoral mitogenome calls for further investigations on the potential robustness of octocoral mitochondria to the increased oxidative stress. The second chapter presents a mitochondrion-centric view of climate-change stress response by investigating mtDNA damage, repair, and copy number dynamics during stress. The changes in gene expression of a set of stress-related nuclear, and mitochondrial genes in octocorals were also monitored. A robust response of octocoral mitochondria to oxidative mtDNA damage was observed, exhibiting a rapid recovery of the damaged mtDNA. The stress-specific regulation of the mtMutS gene was detected, indicating its potential involvement in stress response. The results highlight the resilience potential of octocoral mitochondria, and its adaptive benefits in changing oceans.
The tRNA genes in animal mitochondria play a pivotal role in mt-mRNA processing and maturation. The influence of paucity of tRNA genes on transcription of the mitogenome in octocorals has not been investigated. The third chapter steps in the direction to understand the mitogenome transcription by investigating the nature of mature mRNAs. Several novel features not present in a “typical” animal mt-mRNAs were detected. The majority of the mitochondrial transcripts were observed as polycistronic units (i.e. the mRNA carryi

The mitochondria of non-bilaterian metazoans display a staggering diversity of genome organizations and also a slow rate of mtDNA evolution, unlike bilaterians, which may hold a key to understand the early evolution of the animal mitochondrion. Octocorals are unique members of Phylum Cnidaria, harboring several atypical mitochondrial genomic features, including a paucity of tRNA genes, various genome arrangements and the presence of novel putative mismatch repair gene (mtMutS) with various potential biological roles. Thus octocorals represents an interesting model for the study of mitochondrial biology and evolution. However, besides its utility in molecular phylogenetics, the mtDNA of octocorals is not studied from the perspective of DNA repair, oxidative stress response or gene expression; and there is a general lack of knowledge on the DNA repair capabilities and role of the mtMutS gene, response to climate-change, and mtDNA transcription in absence of interspersed tRNA genes of octocoral mitochondrial genome. In order to put the observed novelties in the octocoral mitochondria in an evolutionary and an environmental context, and to understand their potential functions and the consequences of their presence in conferring fitness during climate change induced stress, this study was undertaken. This dissertation aims to explore the uniqueness and diversity of octocoral mtDNA from an environmental as well as an evolutionary perspective.
The thesis comprises five chapters exploring various facets of octocoral biology. The introductory section provides basic information and elaborates on the importance of studying non-bilaterian mitochondria. The first chapter sets the base for subsequent gene expression studies. Octocorals are extensively studied from a taxonomic and phylogenetic point of view. However, gene expression studies on these organisms have only recently started to appear. To successfully employ the most commonly used gene expression profiling technique i.e., the quantitation real-time PCR (qPCR), it is necessary to have an experimentally validated, treatment-specific set of stably expressed reference genes that will support for the accurate quantification of changes in expression of genes of interest. Hence, seven housekeeping genes, known to exhibit constitutive expression, were investigated for expression stability during simulated climate-changed (i.e. thermal and low-pH) induced stress. These genes were validated and subsequently used in gene expression studies on Sinularia cf. cruciata, our model octocoral.
The occurrence of a mismatch repair gene, and the slow rates of mtDNA evolution in octocoral mitogenome calls for further investigations on the potential robustness of octocoral mitochondria to the increased oxidative stress. The second chapter presents a mitochondrion-centric view of climate-change stress response by investigating mtDNA damage, repair, and copy number dynamics during stress. The changes in gene expression of a set of stress-related nuclear, and mitochondrial genes in octocorals were also monitored. A robust response of octocoral mitochondria to oxidative mtDNA damage was observed, exhibiting a rapid recovery of the damaged mtDNA. The stress-specific regulation of the mtMutS gene was detected, indicating its potential involvement in stress response. The results highlight the resilience potential of octocoral mitochondria, and its adaptive benefits in changing oceans.
The tRNA genes in animal mitochondria play a pivotal role in mt-mRNA processing and maturation. The influence of paucity of tRNA genes on transcription of the mitogenome in octocorals has not been investigated. The third chapter steps in the direction to understand the mitogenome transcription by investigating the nature of mature mRNAs. Several novel features not present in a “typical” animal mt-mRNAs were detected. The majority of the mitochondrial transcripts were observed as polycistronic units (i.e. the mRNA carryi

Top podcasts en Educación

Alzhaimer
SANDRA NOEMI VALVERDE RIOS
Relatos en inglés con Duolingo
Duolingo
Tu Ingles! podcast
Tu Ingles!
The Business English Podcast
Energetic English
Aleman para principiantes
Deissy Bibiana Gomez Castillo
Women in the Middle®: Loving Life After 50 - Midlife Coach Podcast
Suzy Rosenstein

Más de Ludwig-Maximilians-Universität München

LMU Rechenmethoden 2012/2013
Prof. Dr. Jan von Delft
GK Strafrecht II (A-K) SoSe 2020 Satzger
Helmut Satzger
NANO-BIO-PHYSICS SYMPOSIUM 07.09.2019 Day 2
Ludwig-Maximilians-Universität München
NANO-BIO-PHYSICS SYMPOSIUM 06.09.2019 Day 1
Ludwig-Maximilians-Universität München
Center for Advanced Studies (CAS) Research Focus Global Health
Center for Advanced Studies
The Wicked Mu
Stephan Kulla und Nils Hansen