10 分钟

人工智能经典《苦涩的教训》聊聊背后的思‪考‬ AI时代的产品经理手册

    • 科技

今天要介绍的这篇文章《The Bitter Lesson 苦涩的教训》是由知名计算机科学家,阿尔伯塔大学、DeepMind的神经网络专家Rich Sutton 在 2019 年发表的,主要讨论了在人工智能研究中一个重要的观察:当简单的算法能够利用大量的计算资源时,往往会胜过依赖于人类专家洞察力的复杂算法。

在回顾AI历史上一些关键进展时,Sutton指出,虽然研究人员曾多次尝试通过设计复杂且模仿人类理解的算法来提升机器学习模型的表现,但通常更简单、更基本的方法,只要能通过增加计算能力进行扩展往往能取得更佳效果。他强调了规模和算力的重要性,并认为未来的研究应该更多依赖于扩算力,而非复杂的设计。

OpenAI 在2021年的论文《神经语言模型的缩放法则 Scaling Laws for Neural Language Models》讨论了AI模型的性能如何随模型大小、数据集大小和训练计算量的规模提升而提升。

今天,在缩放法则(Scaling Laws)的加持下,简单的Transformer架构让GPT等大语言模型涌现出了“智能”,也展示出了AGI通用人工智能的可能性。
现在就让我们来读一读,回顾这篇经典文章。
苦涩的教训
Rich Sutton  2019年3月13日
我们从70年的人工智能研究中可以得出的最大教训是,利用计算的通用方法最终是最有效的,而且差距很大。其根本原因在于摩尔定律,即集成电路上可容纳的晶体管数量每隔18-24个月会翻倍,从而使芯片性能指数倍增。
大多数人工智能研究都是在假设智能代理可用的算力资源是恒定,在这种情况下,利用人类知识是提高性能的少数行之有效的方法之一,但在略长于典型研究项目的时间内,大规模的计算量又不可避免地会变得可用。
研究人员寻求在短期内实现改进,试图充分利用他们对特定领域的人类知识来节省算力成本,但从长远来看,唯一重要的是利用计算资源。这两者不必相互对立,但实际往往如此。由于对一种方法的投资存在心理承诺,我们在一个东西上花费大量的时间,就不会在另一个上花费更多时间。而且,基于人类知识的方法往往会使方法复杂化,使其不太适合利用计算的通用方法。这些案例不胜枚举,我称之为苦涩的教训。
作为人工智能研究者,我们学习这些教训是有指导意义的。下面,我们来回顾其中一些最知名的案例。

在1997年,计算机国际象棋领域见证了一个历史性的事件——计算机通过大规模深度搜索击败了世界冠军卡斯帕罗夫。当时,大部分研究者都倾向于利用人类对棋局结构的深入理解来设计算法,这一失败让他们颇感挫败。当一个相对简单的基于搜索的方法,结合先进的硬件和软件展示出惊人效力时,依赖人类知识的方法显得力不从心。这些研究人员对于“蛮力”搜索的胜利持怀疑态度,认为虽然这次有效,但它并非一种普遍适用的策略,也不符合人类下棋的风格。他们曾希望能通过更贴近人类思维的方法取得胜利,因此对结果感到失望。
计算机围棋的研究历程展示了一种类似的发展模式,但这一过程比其它领域晚了大约20年。初期,研究者们尝试通过利用人类的棋局知识和游戏特征来减少搜索需求,但随着搜索技术在规模上的有效应用,这些努力最终被证明是无效甚至有害的。同样,自我对弈的方式学习价值函数也显示出其重要性,这种方法不仅应用于围棋,在国际象棋等许多其他游戏中也同样适用,尽管在1997年首次战胜世界冠军的程序中,学习的作用不大。自我对弈不仅是学习的一种方式,它像搜索技术一样,使得可以利用大量计算资源。搜索和学习是利用大

今天要介绍的这篇文章《The Bitter Lesson 苦涩的教训》是由知名计算机科学家,阿尔伯塔大学、DeepMind的神经网络专家Rich Sutton 在 2019 年发表的,主要讨论了在人工智能研究中一个重要的观察:当简单的算法能够利用大量的计算资源时,往往会胜过依赖于人类专家洞察力的复杂算法。

在回顾AI历史上一些关键进展时,Sutton指出,虽然研究人员曾多次尝试通过设计复杂且模仿人类理解的算法来提升机器学习模型的表现,但通常更简单、更基本的方法,只要能通过增加计算能力进行扩展往往能取得更佳效果。他强调了规模和算力的重要性,并认为未来的研究应该更多依赖于扩算力,而非复杂的设计。

OpenAI 在2021年的论文《神经语言模型的缩放法则 Scaling Laws for Neural Language Models》讨论了AI模型的性能如何随模型大小、数据集大小和训练计算量的规模提升而提升。

今天,在缩放法则(Scaling Laws)的加持下,简单的Transformer架构让GPT等大语言模型涌现出了“智能”,也展示出了AGI通用人工智能的可能性。
现在就让我们来读一读,回顾这篇经典文章。
苦涩的教训
Rich Sutton  2019年3月13日
我们从70年的人工智能研究中可以得出的最大教训是,利用计算的通用方法最终是最有效的,而且差距很大。其根本原因在于摩尔定律,即集成电路上可容纳的晶体管数量每隔18-24个月会翻倍,从而使芯片性能指数倍增。
大多数人工智能研究都是在假设智能代理可用的算力资源是恒定,在这种情况下,利用人类知识是提高性能的少数行之有效的方法之一,但在略长于典型研究项目的时间内,大规模的计算量又不可避免地会变得可用。
研究人员寻求在短期内实现改进,试图充分利用他们对特定领域的人类知识来节省算力成本,但从长远来看,唯一重要的是利用计算资源。这两者不必相互对立,但实际往往如此。由于对一种方法的投资存在心理承诺,我们在一个东西上花费大量的时间,就不会在另一个上花费更多时间。而且,基于人类知识的方法往往会使方法复杂化,使其不太适合利用计算的通用方法。这些案例不胜枚举,我称之为苦涩的教训。
作为人工智能研究者,我们学习这些教训是有指导意义的。下面,我们来回顾其中一些最知名的案例。

在1997年,计算机国际象棋领域见证了一个历史性的事件——计算机通过大规模深度搜索击败了世界冠军卡斯帕罗夫。当时,大部分研究者都倾向于利用人类对棋局结构的深入理解来设计算法,这一失败让他们颇感挫败。当一个相对简单的基于搜索的方法,结合先进的硬件和软件展示出惊人效力时,依赖人类知识的方法显得力不从心。这些研究人员对于“蛮力”搜索的胜利持怀疑态度,认为虽然这次有效,但它并非一种普遍适用的策略,也不符合人类下棋的风格。他们曾希望能通过更贴近人类思维的方法取得胜利,因此对结果感到失望。
计算机围棋的研究历程展示了一种类似的发展模式,但这一过程比其它领域晚了大约20年。初期,研究者们尝试通过利用人类的棋局知识和游戏特征来减少搜索需求,但随着搜索技术在规模上的有效应用,这些努力最终被证明是无效甚至有害的。同样,自我对弈的方式学习价值函数也显示出其重要性,这种方法不仅应用于围棋,在国际象棋等许多其他游戏中也同样适用,尽管在1997年首次战胜世界冠军的程序中,学习的作用不大。自我对弈不仅是学习的一种方式,它像搜索技术一样,使得可以利用大量计算资源。搜索和学习是利用大

10 分钟