230 episodes

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.

# Modellansatz Gudrun Thäter, Sebastian Ritterbusch

• Mathematics

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.

Waveguides

## Waveguides

This is the third of three conversation recorded during the Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Anne-Sophie Bonnet-BenDhia from ENSTA in Paris about transmission properties in perturbed waveguides. The spectral theory is essential to study wave phenomena. For instance, everybody has experimented with resonating frequencies in a bathtube filled with water. These resonant eigenfrequencies are eigenvalues of some operator which models the flow behaviour of the water. Eigenvalue problems are better known for matrices. For wave problems, we have to study eigenvalue problems in infinite dimension. Like the eigenvalues for a finite dimensional matrix the Spectral theory gives access to intrinisic properties of the operator and the corresponding wave phenomena. Anne-Sophie is interested in waveguides. For example, optical fibres can guide optical waves while wind instruments are guides for acoustic waves. Electromagnetic waveguides also have important applications. A practical objective is to optimize the transmission in a waveguide, even if there are some perturbations inside. It is known that for certain frequencies, there is no reflection by the perturbations but it is not apriori clear how to find these frequencies. Anne-Sophie uses complex analysis for that. The idea is to complexify the (originally real) coordinates by analytic extension. It is a classic idea for resonances that she adapts to the problem of transmission. This mathematical method of complex scaling is linked to the method of perfectly matched layers in numerics. It is used to solve problems set in unbounded domains on a computer by finite elements. Thanks to the complex scaling, she can solve a problem in a bounded domain, which reproduces the same behaviour as in the infinite domain. Finally, Anne-Sophie is able to get numerically a complex spectrum of frequencies, related to the quality of the transmission in a perturbed waveguide. The imaginary part of the complex quantity gives an indication of the quality of the transmission in the waveguide. The closer to the real axis the better the transmission.

• 31 min
Gruppenentscheidungen

## Gruppenentscheidungen

Gudrun sprach im Januar 2020 mit drei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Samory Gassama, Lennart Harms und David Schneiderhan. Sie hatten in ihrem Projekt Gruppenentscheidungen modelliert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben. Wie lassen sich Entscheidungen von Wählergruppen fair in demokratische Willensbildung einbringen? Mit diesem Thema beschäftigt sich u.a. auch die Volkswirtschaftslehre. Die dafür benutzten Modelle sollten einige Eigenschaften haben. Ein grundlegendes Kriterium wäre beispielsweise: Wenn alle der gleichen Meinung sind, sollte diese Meinung auch immer die Gruppenentscheidung sein. Ein weiteres Kriterum könnte verlangen, dass das Ergebnis Pareto-optimal ist, es also kein anderes Ergebnis gibt, mit dem jedes Gruppenmitglied zufriedener wäre. Um die Präferenz der Gruppe auszudrücken, führen die Studenten die Wohlfahrtsfunktion ein. Das ist eine Abbildung, welche als Input die Präferenzen der einzelnen Wähler verknüpft. Das Wahlverfahren wird sozusagen in dieser Abbildung modelliert. Man wünscht sich Anonymität: Jede Stimme sollte gleich gewertet werden. Neutralität: Wenn die Relationen im Input invertiert werden, bewirkt dies das Selbe beim Output. Monotonie: Falls eine Relation aus dem Input, welche nicht den Präferenzen des Outputs entspricht, sich zur Präferenzrelation des Outputs ändert, bleibt dieser gleich. Verfahren wie Rangaddition und Condorcet-Methode sind klassisch und erfüllen leider nicht alle diese Bedingungen. Die Studenten fügen eine weitere Entscheidungsebene im Modell hinzu. Man nennt dies geschachtelte Wahl. Als Beispiele dienen die US Präsidentschaftswahl 2016 und der Eurovision Song Contest 2019. Bei den Präsidentschaftswahlen in den VereinigtenStaaten von Amerika, wird der Präsident von den Wahlleuten der Bundesstaaten für eine Amtszeit bestimmt. Jeder Bundesstaat hat unterschiedlich viele Wahlleute. Die Wahlberechtigten legen unmittelbar nur die Wahlleute fest. Deshalb ist das Modell der US Präsidentschaftswahlen ist ein geschachteltes Modell. Im ersten Schritt, werden in allen 52 Staaten die Wahlen, mit den US Bürgern des jeweiligen Staates als Wähler, mithilfe des Condorcet Modells durchgeführt. Im zweiten Schritt bilden eben jene 52 Staaten die neue Wählermenge, welche dann über eine gewichtete Rangaddition den endgültigen Präsidenten bestimmt. Die Studenten haben im Projekt zwei Datensätze verwendet, um die Präsidentschaftswahlen 2016 in den USA zwischen Donald Trump und Hillary Clinton zu simulieren. Sie geben die Anzahl der Stimmen für Donald Trump und Hillary Clinton in den verschiedenen Wahlbezirken der USA an. Um die Simulation durchzuführen, wurde Google Colab verwendet. Die benutzte Programmiersprache ist Python. Die Wahl wurde folgendermaßen simuliert: (...)

• 34 min
Algorithmisches Differenzieren

## Algorithmisches Differenzieren

Gudruns Arbeitsgruppe begrüßte im Januar 2020 Andrea Walther als Gast. Sie ist Expertin für das algorithmische Differenzieren (AD) und ihre Arbeitsgruppe ist verantwortlich für das ADOL-C Programmpaket zum algorithmischen Differenzieren. Zusammen mit Andreas Griewank hat sie 2008 das Standardbuch zu AD veröffentlicht. Im Abitur und im mathematischen Grundstudium lernt jede und jeder Anwendungen kennen, wo Ableitungen von Funktionen gebraucht werden. Insbesondere beim Auffinden von Minima und Maxima von Funktionen ist es sehr praktisch, dies als Nullstellen der Ableitung zu finden. Bei der Modellierung komplexer Zusammenhänge mit Hilfe von partiellen Differentialgleichungen ist es möglich, diese Idee in ein abstrakteres Setting zu Übertragen. Eine sogenannte Kostenfunktion misst, wie gut Lösungen von partiellen Differentialgleichungen einer vorgegebenen Bedingung genügen. Man kann sich beispielsweise einen Backofen vorstellen, der aufgeheizt wird, indem am oberen und unteren Rand eine Heizspirale Wärme in den Ofen überträgt. Für den Braten wünscht man sich eine bestimmte Endtemperaturverteilung. Die Wärmeverteilung lässt sich mit Hilfe der Wärmeleitungsgleichung berechnen. In der Kostenfunktion wird dann neben der gewünschten Temperatur auch noch Energieeffizienz gemessen und die Abweichung von der Endtemperatur wird zusammen mit der benötigten Energie minimiert. Auch hierzu werden Ableitungen berechnet, deren Nullstellen helfen, diese Kosten zu minimeren. Man spricht hier von optimaler Steuerung. Eine Möglichkeit, die abstrakte Ableitung auszudrücken, ist das Lösen eines sogenannten adjungierten partiellen Differenzialgleichungsproblems. Aber hier wird es sehr schwierig, immer schnell und fehlerfrei Ableitungen von sehr komplexen und verschachtelten Funktionen zu berechnen, zumal sie für jedes Problem immer wieder neu und anders aussehen. Außerdem braucht man in der numerischen Auswertung des Algorithmus oft nur Werte dieser Ableitung an bestimmten Stellen. Deshalb ist die effiziente Berechnung von Funktionswerten der Ableitung ein unverzichtbarer Baustein in zahlreichen Anwendungen, die von Methoden zur Lösung nichtlinearer Gleichungen bis hin zu ausgefeilten Simulationen in der Optimierung und optimalen Kontrolle reichen. Am liebsten sollte dies der Computer fehlerfrei oder doch mit sehr kleinen Fehlern übernehmen können. Auch für das Newtonverfahren braucht man die Ableitung der Funktion. Es ist das Standardverfahren zur Lösung nichtlinearer Gleichungen und Gleichungssysteme. Das algorithmische Differenzieren (AD) liefert genaue Werte für jede Funktion, die in einer höheren Programmiersprache gegeben ist, und zwar mit einer zeitlichen und räumlichen Komplexität, die durch die Komplexität der Auswertung der Funktion beschränkt ist. Der Kerngedanke der AD ist die systematische Anwendung der Kettenregel der Analysis. Zu diesem Zweck wird die Berechnung (...)

• 1 hr 8 min
Pattern Formation

## Pattern Formation

This is the second of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Mariana Haragus about Benard-Rayleigh problems. On the one hand this is a much studied model problem in Partial Differential Equations. There it has connections to different fields of research due to the different ways to derive and read the stability properties and to work with nonlinearity. On the other hand it is a model for various applications where we observe an interplay between boyancy and gravity and for pattern formation in general. An everyday application is the following: If one puts a pan with a layer of oil on the hot oven (in order to heat it up) one observes different flow patterns over time. In the beginning it is easy to see that the oil is at rest and not moving at all. But if one waits long enough the still layer breaks up into small cells which makes it more difficult to see the bottom clearly. This is due to the fact that the oil starts to move in circular patterns in these cells. For the problem this means that the system has more than one solutions and depending on physical parameters one solution is stable (and observed in real life) while the others are unstable. In our example the temperature difference between bottom and top of the oil gets bigger as the pan is heating up. For a while the viscosity and the weight of the oil keep it still. But if the temperature difference is too big it is easier to redistribute the different temperature levels with the help of convection of the oil. The question for engineers as well as mathematicians is to find the point where these convection cells evolve in theory in order to keep processes on either side of this switch. In theory (not for real oil because it would start to burn) for even bigger temperature differences the original cells would break up into even smaller cells to make the exchange of energy faster. In 1903 Benard did experiments similar to the one described in the conversation which fascinated a lot of his colleagues at the time. The equations where derived a bit later and already in 1916 Lord Rayleigh found the 'switch', which nowadays is called the critical Rayleigh number. Its size depends on the thickness of the configuration, the viscositiy of the fluid, the gravity force and the temperature difference. Only in the 1980th it became clear that Benards' experiments and Rayleigh's analysis did not really cover the same problem since in the experiment the upper boundary is a free boundary to the surrounding air while Rayleigh considered fixed boundaries. And this changes the size of the critical Rayleigh number. For each person doing experiments it is also an observation that the shape of the container with small perturbations in the ideal shape changes the convection patterns. Maria does study the dynamics of nonlinear waves and patterns. This means she is interested in understanding processes which (...)

• 30 min
Linear Sampling

## Linear Sampling

This is the first of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun talked to Fioralba Cakoni about the Linear Sampling Method and Scattering. The linear sampling method is a method to reconstruct the shape of an obstacle without a priori knowledge of either the physical properties or the number of disconnected components of the scatterer. The principal problem is to detect objects inside an object without seeing it with our eyes. So we send waves of a certain frequency range into an object and then measure the response on the surface of the body. The waves can be absorbed, reflected and scattered inside the body. From this answer we would like to detect if there is something like a tumor inside the body and if yes where. Or to be more precise what is the shape of the tumor. Since the problem is non-linear and ill posed this is a difficult question and needs severyl mathematical steps on the analytical as well as the numerical side. In 1996 Colton and Kirsch (reference below) proposed a new method for the obstacle reconstruction problem in inverse scattering which is today known as the linear sampling method. It is a method to solve the above stated problem, which scientists call an inverse scattering problem. The method of linear sampling combines the answers to lots of frequencies but stays linear. So the problem in itself is not approximated but the interpretation of the response is. The central idea is to invert a bounded operator which is constructed with the help of the integral over the boundary of the body. Fioralba got her Diploma (honor’s program) and her Master's in Mathematics at the University of Tirana. For her Ph.D. she worked with George Dassios from the University of Patras but stayed at the University of Tirana. After that she worked with Wolfgang Wendland at the University of Stuttgart as Alexander von Humboldt Research Fellow. During her second year in Stuttgart she got a position at the University of Delaware in Newark. Since 2015 she has been Professor at Rutgers University. She works at the Campus in Piscataway near New Brunswick (New Jersey).

• 47 min
Emmy Noether Konferenz

## Emmy Noether Konferenz

Emmy Noether, eine der bedeutendsten Mathematiker*innen weltweit, prägte mit ihren „Arbeits- und Auffassungsmethoden“ die moderne Algebra und trug entscheidend zur Algebraisierung mathematischer Disziplinen bei. Mit ihrer 1918 publizierten Habilitationsschrift löste sie zentrale mathematische Probleme der allgemeinen Relativitätstheorie. Am 4. Juni 1919 hielt Emmy Noether ihren Habilitationsvortrag. Sie war die erste Frau, die in Preußen habilitiert wurde. Genau 100 Jahre später stellte in Berlin eine interdisziplinäre Fachkonferenz deshalb die Frage: „Wie kommt das Neue in die Welt?“ Die Tagung wurde gemeinsam veranstaltet vom Berliner Exzellenzcluster MATH+, der Zentralen Frauenbeauftragten der Freien Universität Berlin und dem Max-Planck-Institut für Wissenschaftsgeschichte. Aus mathematischer, physikalischer, wissenschaftstheoretischer und ‑historischer Perspektive beleuchtete die Konferenz die Bedeutung Noethers bis in die Gegenwart. Darüber hinaus nahm sie Strukturen und Prozesse der Diskriminierung und Marginalisierung in den Blick, die Noether als Frau jüdischer Herkunft im deutschen Wissenschaftssystem widerfuhren und die Rezeption ihrer mathematischen Leistungen auch über ihren Tod hinaus beeinträchtigten. Den Abschluss bildete am 6. Juni 2019 eine öffentliche Podiumsdiskussion zur Frage "Wie kommt das Neue in die Welt? Reflexionen über das Verhältnis von Mathematik, Gesellschaft, Geschlecht und Diversität" unter Moderation von Jan-Martin Wiarda (Wissenschaftsjournalist). Das Gespräch hat Gudrun für unseren Podcast mitgeschnitten. Auf dem Podium waren vertreten: Prof. Dr. Katja Eilerts, Abteilung Grundschulpädagogik – Mathematik im Primarbereich, Humboldt-Universität zu Berlin. Prof. Dr. Rupert Klein, Vorstandsmitglied des Exzellenzclusters MATH+ und Sprecher des Mathematik-SFB 1114, Freie Universität Berlin. Prof. Dr. Helena Mihaljević, Professorin für Data Science und Analytics des Einstein Center Digital Future, Hochschule für Technik und Wirtschaft Berlin. Dr. Anina Mischau, Leiterin der Arbeitsstelle Gender Studies in der Mathematik, Freie Universität Berlin. Prof. Dr. Caren Tischendorf, Vorstandsmitglied des Exzellenzclusters MATH+, Humboldt-Universität zu Berlin. Außerdem spricht am Ende des Mitschnittes Dr. Mechthild Koreuber Frauenbeauftragte der Freien Universität Berlin. Im Gespräch wird erörtert, inwieweit es zu Konflikten mit der Fachdisziplin Mathematik führt, wenn der Blick auch auf geschlechtergerechte Ausbildung - insbesondere im Lehramt - gelenkt wird. Anina Mischau hat hier Pionierarbeit in der Mathematik an der FU Berlin geleistet. Dort hat sie inzwischen den Eindruck, dass die Arbeit geschätzt wird. Bei der Untersuchung des Anteils von Frauen in den hoch renommierten Fachzeitschriften und auf den alle vier Jahre stattfindenden Intermationalen Konferenzen für Mathematik sind die Zahlen allerdings noch nicht sehr ermutigend. Selbst die relativ gibt es kaum Verbesserungen. (...)

• 1 hr 3 min

## Customer Reviews

Politik und Liebe ,

### der einzige Cast...

...in meinem Podcatcher der mich nötigt während den Folgen mich in Themen einzulesen. Ich liebe es!

Methodischer Nicolas ,

### Win/win

Ein wundervoller Podcast für alle die sich für Mathematik und ihre Relevanz für das alltägliche Leben interessieren. Darüber hinaus ist der Podcast eine klassische Win/Win Situation:
Die Studenten, die ihre Abschlussarbeiten vorstellen, können ihre spannende Forschung einem deutlich breiteren Publikum vorstellen als es im klassischen Seminar an der Universität möglich gewesen wäre.
Der Hörer lernt wo überall Mathematik zu finden ist und wie mathematische Modelle in der Lage sind die Welt zu beschreiben.
Vielen Dank für diesen Podcast!