1 hr 8 min

Arnold Sommerfeld Theory Colloquium Sommerfeld Theory Colloquium (ASC)

    • Science

Majorana fermions are spatially localized superpositions of electron and hole excitations in the middle of a superconducting energy gap. These unusual particles have been predicted to occur at the interface between a magnetic and superconducting electrode, in contact with a topological insulator (such as a Bi crystal or a HgTe quantum well). A single qubit can be encoded nonlocally in a pair of spatially separated Majorana fermions. Such Majorana qubits are in demand as building blocks of a topological quantum computer, but direct experimental tests of the nonlocality remain elusive.
We propose a method to probe the nonlocality by means of crossed Andreev reflection, which is the injection of an electron into one bound state followed by the emission of a hole by the other bound state. The resulting splitting of a Cooper pair by the Majorana qubit produces a pair of excitations that are maximally entangled in the momentum (rather than the spin) degree of freedom, and might be used as "flying qubits" in quantum information processing.

Majorana fermions are spatially localized superpositions of electron and hole excitations in the middle of a superconducting energy gap. These unusual particles have been predicted to occur at the interface between a magnetic and superconducting electrode, in contact with a topological insulator (such as a Bi crystal or a HgTe quantum well). A single qubit can be encoded nonlocally in a pair of spatially separated Majorana fermions. Such Majorana qubits are in demand as building blocks of a topological quantum computer, but direct experimental tests of the nonlocality remain elusive.
We propose a method to probe the nonlocality by means of crossed Andreev reflection, which is the injection of an electron into one bound state followed by the emission of a hole by the other bound state. The resulting splitting of a Cooper pair by the Majorana qubit produces a pair of excitations that are maximally entangled in the momentum (rather than the spin) degree of freedom, and might be used as "flying qubits" in quantum information processing.

1 hr 8 min

Top Podcasts In Science

24 spørgsmål til professoren
Weekendavisen
KRANIEBRUD
Radio4
Videnskab fra vilde hjerner
Niels Bohr Institutet · Københavns Universitet
Hva så?! forklarer alt
Christian Fuhlendorff
Periodisk
RAKKERPAK
Supertrends
24syv

More by Ludwig-Maximilians-Universität München

Rachel Carson Center (LMU RCC) - SD
Rachel Carson Center (RCC)
Münchner Altbestände - Open Access LMU - Teil 04/05
Ludwig-Maximilians-Universität München
Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Digitale Hochschulschriften der LMU
Ludwig-Maximilians-Universität München
LMU IDK Mimesis
Simone Niehoff
Hegel lectures by Robert Brandom, LMU Munich
Robert Brandom, Axel Hutter
MCMP – Logic
MCMP Team