50 episodes

A podcast about neuroscience, artificial intelligence, and science more broadly, run by a group of computational neuroscientists.

Unsupervised Thinking Neuro Collective

    • Science

A podcast about neuroscience, artificial intelligence, and science more broadly, run by a group of computational neuroscientists.

    Models of the Mind: How physics, engineering and mathematics have shaped our understanding of the brain

    Models of the Mind: How physics, engineering and mathematics have shaped our understanding of the brain

    Grace wrote a book! And she talked to Brain Inspired host Paul Middlebrooks about it.
    The book is about the many different ways mathematical methods have influenced neuroscience, from models of single cells all the way up to equations to explain behavior. You can learn more about the book and how to get it in ebook, audiobook, and hard cover worldwide by visiting tinyurl.com/h9dn4bw7
    On this cross-posting of Brain Inspired, Grace talks about the book and the field of computational neuroscience more generally. Give it a listen and go check out other episodes of Brain Inspired for more great conversations.

    • 1 hr 18 min
    E49: How Important is Learning?

    E49: How Important is Learning?

    The age-old debate of nature versus nurture is now being played out between artificial intelligence and neuroscience. The dominant approach in AI, machine learning, puts an emphasis on adapting processing to fit the data at hand. Animals, on the other hand, seem to have a lot of built in structure and tendencies, that mean they function well right out of the womb. So are most of our abilities the result of genetically-encoded instructions, honed over generations of evolution? Or are our interactions with the environment key? We discuss the research that has been done on human brain development to try to get at the answers to these questions. We take about the compromise position that says animals may be "born to learn"---that is, innate tendencies help make sure the right training data is encountered and used efficiently during development. We also get into what all this means for AI and whether machine learning researchers should be learning less. Throughout, we ask if humans are special, argue that development can happen without learning, and discuss the special place of the octopus in the animal kingdom.

    • 1 hr 6 min
    E48: Studying the Brain in Light of Evolution

    E48: Studying the Brain in Light of Evolution

    The brain is the result of evolution. A lot of evolution. Most neuroscientists don't really think about this fact. Should we? On this episode we talk about two papers---one focused on brains and the other on AI---that argue that following evolution is the path to success. As part of this argument, they make the point that, in evolution, each stage along the way needs to be fully functional, which impacts the shape and role of the brain. As a result, the system is best thought of as a whole---not chunked into perception, cognition and action, as many psychologists and neuroscientists are wont to do. In discussing these arguments, we talk about the role of representations in intelligence, go through a bit of the evolution of the nervous system, and remind ourselves that evolution does not necessarily optimize. Throughout, we ask how this take on neuroscience impacts our own work and try to avoid saying "represents".

    • 59 min
    E47: Deep Learning to Understand the Brain

    E47: Deep Learning to Understand the Brain

    The recent advances in deep learning have done more than just make money for startups and tech companies. They've also infiltrated neuroscience! Deep neural networks---models originally inspired by the basics of the nervous system---are finding ever more applications in the quest to understand the brain. We talk about many of those uses in the episode. After first describing more traditional approaches to modeling behavior, we talk about how neuroscientists compare deep net models to real brains using both performance and neural activity. We then get into the attempts by the field of machine learning to understand their own models and how ML and neuroscience can share methods (and maybe certain cultural tendencies). Finally we talk about the use of deep nets to generate stimuli specifically tailored to drive real neurons to their extremes. Throughout, we notice how deep learning is "complicating the narrative", ask "are deep nets normative models?", and struggle to talk about a topic we actually know about.

    • 1 hr 5 min
    E46: What We Learn from Model Organisms

    E46: What We Learn from Model Organisms

    From worms to flies, and mice to macaques, neuroscientists study a range (but not very large range...) of animals when they study "the brain". On this episode we ask a lot of questions about these model organisms, such as: how are they chosen? should we use more diverse ones? and what is a model organism actually a model of? We also talk about how the development of genetic tools for certain animals, like mice, have made them the dominant lab animal and the difficulty of bringing a new model species onto the scene. We also get into the special role that simple organisms, like C. elegans, play and how we can extrapolate findings from these small animals to more complex ones. Throughout, special guest Adam Calhoun joins us in asking "What even is the purpose of neuroscience???" and discussing the extent to which mice do or do not see like humans.

    • 1 hr 1 min
    E45: How Working Memory Works

    E45: How Working Memory Works

    Working memory is the ability to keep something in mind several seconds after it's gone. Neurons don't tend to keep firing when their input is removed, so how does the brain hold on to information when it's out of sight? Scientists have been probing this question for decades. On this episode, we talk about how working memory is studied and the traditional view of how it works, which includes elevated persistent firing rates in neurons in the prefrontal cortex. The traditional view, however, is being challenged in many ways at the moment. As evidence of that we read a "dueling" paper on the topic, which argues for a view that incorporates bursts of firing, oscillations, and synaptic changes. In addition to covering the experimental evidence for different views, we also talk about the many computational models of working memory that have been developed over the years. Throughout we talk about energy efficiency, the difference between maintenance and manipulation, and the effects of putting scientific disagreements in writing. We also admit to not reading *any* primary sources.

    • 59 min

Top Podcasts In Science

Tiedekulma podcast
Helsingin yliopisto
Radiolab
WNYC Studios
Utelias mieli
Helsingin yliopisto
Crash Course Pods: The Universe
Crash Course Pods, Complexly
The Infinite Monkey Cage
BBC Radio 4
Making Sense with Sam Harris
Sam Harris