14 min

Research: Can Privacy and Traceability Exist Together: Tracing Keys and Jurisdictions‪?‬ ASecuritySite Podcast

    • Technology

Blog: https://medium.com/asecuritysite-when-bob-met-alice/can-privacy-and-traceability-exist-together-tracing-keys-and-jurisdictions-bfc395d502a
Introduction
Privacy and traceability are two sides of the same coin, and where the coin will never land on its side. If you want privacy in a transaction, you have to hide the payer and payee and the transaction value. All that needs to happen is that there is proof that the payer has enough currency to pay the payee. We can do this with a range proof — so that Bob can show that the sum of his previous transactions minus the current one is greater than zero. But, this stops any traceability and stops investigators from investigating the trail of an illegal transaction. It’s a dilemma that can keep cybersecurity professionals awake at night and where a few bad apples can spoil the whole bunch.
But, if we add traceability — such as in Bitcoin — we remove the privacy aspect, and if someone links your Bitcoin address to you and the others you trade with, they will be able to see all your transactions. “Ah, I see”, they might say, “That Bill has just bought a ticket for a bus journey in Edinburgh at 10:03 am”.
Along with this, we have different requirements in different jurisdictions and where we might want to limit the investigator power in one jurisdiction to others.
For this, John Gilmore — one of the original Cipher Punks — wrote:
“We are literally in a race between our ability to build and deploy technology, and their ability to build and deploy laws and treaties. Neither side is likely to back down or wise up until it has definitively lost the race”
And, so, the tension between strong cryptography, which protects privacy, and the ability to monitor and investigate remains as open as ever. In the UK, the Online Safety Act could aim to insert backdoors in cryptography in order to monitor communications.
So, is it possible to keep things private but also make them traceable? For this, a new paper outlines the TRCT (Traceable Anonymous Transaction Protocol for Blockchain) protocol [1]:


The focus of the paper is on the anonymous cryptocurrencies such as Monero, Dash and ZCash. It uses an Extractable Proof of Knowledge (EPoK) to produce a Zero Knowledge Proof (ZKP) for a transaction. This can then be added to the RingCT method of anonymity to produce traceable transactions for the participants and the amount transacted. The transaction, though, is still kept anonymous.
The paper pinpoints the usage of Monero in a number of crimes, such as for the Wannacry ransomware attack and where the adversaries converted their Bitcoin rewards into Monero tokens [here], and which has not been since been traced. This problem has become so difficult for law enforcement that privacy-protecting cryptocurrencies have been banned in Canada, South Korea and Australia.
TRCT An overview of TRCT is defined in Figure 1. With this, we have a miner which collects broadcasted transactions, and creates a consensus with other miners. An Authority is then responsible for linking account addresses and transactions and which can trace anonymous account addresses of the actual payer and payee and resolve the transaction amount.
For TRCT, the payer generates a long-term key pair and then creates a one-time address (Figure 1). This can then be sent to the payer. The transaction is then anonymised for the payer address, payee address and transaction value using the Ring CT protocol, and which integrates the EPoK scheme. The miner then receives this and checks that it is valid and that the payer has enough currency in their account to make the payment. Next, the miner will check the EPoK so that it can be traced by the authority — and without discovering the secret details in the transaction. The authority can then trace the hidden content in the transaction (Figure 2).


Figure 1 [1]

Figure 2: [1] While applied in RingCT, the TRCT can be generally applied to any

Blog: https://medium.com/asecuritysite-when-bob-met-alice/can-privacy-and-traceability-exist-together-tracing-keys-and-jurisdictions-bfc395d502a
Introduction
Privacy and traceability are two sides of the same coin, and where the coin will never land on its side. If you want privacy in a transaction, you have to hide the payer and payee and the transaction value. All that needs to happen is that there is proof that the payer has enough currency to pay the payee. We can do this with a range proof — so that Bob can show that the sum of his previous transactions minus the current one is greater than zero. But, this stops any traceability and stops investigators from investigating the trail of an illegal transaction. It’s a dilemma that can keep cybersecurity professionals awake at night and where a few bad apples can spoil the whole bunch.
But, if we add traceability — such as in Bitcoin — we remove the privacy aspect, and if someone links your Bitcoin address to you and the others you trade with, they will be able to see all your transactions. “Ah, I see”, they might say, “That Bill has just bought a ticket for a bus journey in Edinburgh at 10:03 am”.
Along with this, we have different requirements in different jurisdictions and where we might want to limit the investigator power in one jurisdiction to others.
For this, John Gilmore — one of the original Cipher Punks — wrote:
“We are literally in a race between our ability to build and deploy technology, and their ability to build and deploy laws and treaties. Neither side is likely to back down or wise up until it has definitively lost the race”
And, so, the tension between strong cryptography, which protects privacy, and the ability to monitor and investigate remains as open as ever. In the UK, the Online Safety Act could aim to insert backdoors in cryptography in order to monitor communications.
So, is it possible to keep things private but also make them traceable? For this, a new paper outlines the TRCT (Traceable Anonymous Transaction Protocol for Blockchain) protocol [1]:


The focus of the paper is on the anonymous cryptocurrencies such as Monero, Dash and ZCash. It uses an Extractable Proof of Knowledge (EPoK) to produce a Zero Knowledge Proof (ZKP) for a transaction. This can then be added to the RingCT method of anonymity to produce traceable transactions for the participants and the amount transacted. The transaction, though, is still kept anonymous.
The paper pinpoints the usage of Monero in a number of crimes, such as for the Wannacry ransomware attack and where the adversaries converted their Bitcoin rewards into Monero tokens [here], and which has not been since been traced. This problem has become so difficult for law enforcement that privacy-protecting cryptocurrencies have been banned in Canada, South Korea and Australia.
TRCT An overview of TRCT is defined in Figure 1. With this, we have a miner which collects broadcasted transactions, and creates a consensus with other miners. An Authority is then responsible for linking account addresses and transactions and which can trace anonymous account addresses of the actual payer and payee and resolve the transaction amount.
For TRCT, the payer generates a long-term key pair and then creates a one-time address (Figure 1). This can then be sent to the payer. The transaction is then anonymised for the payer address, payee address and transaction value using the Ring CT protocol, and which integrates the EPoK scheme. The miner then receives this and checks that it is valid and that the payer has enough currency in their account to make the payment. Next, the miner will check the EPoK so that it can be traced by the authority — and without discovering the secret details in the transaction. The authority can then trace the hidden content in the transaction (Figure 2).


Figure 1 [1]

Figure 2: [1] While applied in RingCT, the TRCT can be generally applied to any

14 min

Top Podcasts In Technology

Acquired
Ben Gilbert and David Rosenthal
Lex Fridman Podcast
Lex Fridman
The TED AI Show
TED
All-In with Chamath, Jason, Sacks & Friedberg
All-In Podcast, LLC
FT Tech Tonic
Financial Times
Hard Fork
The New York Times