23 min

Making Data Assets Profitable with VD‪C‬ Data Crunch

    • Natural Sciences

Many companies are sitting on data assets that could be revenue streams for them, without knowing it. Matt Staudt of VDC discusses making latent data profitable.

Ginette: I'm Ginette, Curtis: and I'm Curtis, Ginette: and you are listening to Data Crunch, Curtis: a podcast about how applied data science, machine learning, and artificial intelligence are changing the world. Ginette: Data Crunch is produced by the Data Crunch Corporation, an analytics, training, and consulting company. Ginette: Today, we chat with the president and CEO at the Venture Development Center, Matt Staudt. Matt Staudt: The company that I'm with is VDC, Venture Development Center. Basically VDC is an organization that works in the alternative big data, bringing buyer and seller together. So we have a unique perspective on available data assets that are out in the marketplace and a unique perspective of the companies that utilize them, and what they're specifically looking for in the way of points of, uh, value for various data assets. My background was originally in the marketing and advertising area, where I owned a company for 20 years, IMG, Interactive Marketing Group. I left that in 2007 and joined this, which was more or less of a lifestyle organization. And we made it a full-fledged organization company back in 2010.Curtis: Now, when you say data assets, can you put a little bit of definition around that for the listeners? Just so they understand how you define a data asset? 'Cause I imagine there may be some things that you think are valuable that maybe they haven't thought of, or maybe it'll help expand our thinking around what a data asset is.Matt: Yeah, sure. In my, in my terminology "data asset" basically falls into eight different categories, where assets basically come from within the information world. So they could be things like transaction data or crowdsource data. They could be things like search data or social data sets. They fall into various categories, traditional data, meaning assets that are business to business or business to consumer generally aggregated by large companies that most everybody's heard of Dun & Bradstreet, Infogroup, Axcium, the credit bureaus, et cetera. Alternative data in our world are companies that have unique data points, unique. They're collecting unique pieces of information, usually as a byproduct of their core business. And we look at the assets that the data sets, the actual data points that they collect. And we figure out if there might be something of value to take to the marketplace, usually to the large consumers of the data, the big aggregators that I previously mentioned, but oftentimes it also fits well with some of our mid-tier players. And we have a significant amount of relationships in the brand grouping, meaning large organizations that they themselves are looking to try and take advantage of big data and utilize data in sales, marketing operations, in order to transform or help to administer certain activities that they have going on.Curtis: Do you find that this is maybe industry specific, like for example, a big insurance company, or if you're in healthcare or something like this, it tends to be more data intensive that you see more activity there or, or is this really applicable across the board? What kind of industries do you find have a lot of applications?Matt: Yeah. Well, it's interesting on the surface, you certainly think that there's probably industries that would have a larger appetite and a larger need for data than, than other organizations, but going, you know, through the list of companies that we've helped over the last 15 or 20 years, it really runs the gamut. I mean, we've worked with insurances, you mentioned insurance, insurance companies. I mentioned credit bureaus. We work with credit bureaus, risk and fraud, sales and marketing, sometimes large brands within those

Many companies are sitting on data assets that could be revenue streams for them, without knowing it. Matt Staudt of VDC discusses making latent data profitable.

Ginette: I'm Ginette, Curtis: and I'm Curtis, Ginette: and you are listening to Data Crunch, Curtis: a podcast about how applied data science, machine learning, and artificial intelligence are changing the world. Ginette: Data Crunch is produced by the Data Crunch Corporation, an analytics, training, and consulting company. Ginette: Today, we chat with the president and CEO at the Venture Development Center, Matt Staudt. Matt Staudt: The company that I'm with is VDC, Venture Development Center. Basically VDC is an organization that works in the alternative big data, bringing buyer and seller together. So we have a unique perspective on available data assets that are out in the marketplace and a unique perspective of the companies that utilize them, and what they're specifically looking for in the way of points of, uh, value for various data assets. My background was originally in the marketing and advertising area, where I owned a company for 20 years, IMG, Interactive Marketing Group. I left that in 2007 and joined this, which was more or less of a lifestyle organization. And we made it a full-fledged organization company back in 2010.Curtis: Now, when you say data assets, can you put a little bit of definition around that for the listeners? Just so they understand how you define a data asset? 'Cause I imagine there may be some things that you think are valuable that maybe they haven't thought of, or maybe it'll help expand our thinking around what a data asset is.Matt: Yeah, sure. In my, in my terminology "data asset" basically falls into eight different categories, where assets basically come from within the information world. So they could be things like transaction data or crowdsource data. They could be things like search data or social data sets. They fall into various categories, traditional data, meaning assets that are business to business or business to consumer generally aggregated by large companies that most everybody's heard of Dun & Bradstreet, Infogroup, Axcium, the credit bureaus, et cetera. Alternative data in our world are companies that have unique data points, unique. They're collecting unique pieces of information, usually as a byproduct of their core business. And we look at the assets that the data sets, the actual data points that they collect. And we figure out if there might be something of value to take to the marketplace, usually to the large consumers of the data, the big aggregators that I previously mentioned, but oftentimes it also fits well with some of our mid-tier players. And we have a significant amount of relationships in the brand grouping, meaning large organizations that they themselves are looking to try and take advantage of big data and utilize data in sales, marketing operations, in order to transform or help to administer certain activities that they have going on.Curtis: Do you find that this is maybe industry specific, like for example, a big insurance company, or if you're in healthcare or something like this, it tends to be more data intensive that you see more activity there or, or is this really applicable across the board? What kind of industries do you find have a lot of applications?Matt: Yeah. Well, it's interesting on the surface, you certainly think that there's probably industries that would have a larger appetite and a larger need for data than, than other organizations, but going, you know, through the list of companies that we've helped over the last 15 or 20 years, it really runs the gamut. I mean, we've worked with insurances, you mentioned insurance, insurance companies. I mentioned credit bureaus. We work with credit bureaus, risk and fraud, sales and marketing, sometimes large brands within those

23 min

Top Podcasts In Natural Sciences