10 min

December 2019 Getting Personal: Omics of the Heart

    • Life Sciences

Jane Ferguson:                  Hi, everyone. Welcome to episode 35 of Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center, and an associate editor at Circulation: Genomic and Precision Medicine. This episode is first airing in December 2019. Let's see what we published this month.
                                                Our first paper is an “Integrated Multiomics Approach to Identify Genetic Underpinnings of Heart Failure and Its Echocardiographic Precursors: The Framingham Heart Study” from Charlotte Anderson, Ramachandran Vasan and colleagues from Herlev and Gentofte Hospital, Denmark and Boston University.
                                                In this paper, the team investigated the genomics of heart failure, combining GWAS with methylation and gene expression data, to prioritize candidate genes. They analyzed four heart failure related and eight echocardiography related phenotypes in several thousand individuals, and then identified SNPs, methylation markers, and differential gene expression associated with those phenotypes. They then created scores for each gene, based on the rank of statistical significance, aggregated across the different omics analysis.
                                                They examined the top ranked genes for evidence of pathway enrichment, and also looked up top SNPs for PheWAS associations in UK Biobank, and examined tissue specific expression in public data. While their data cannot definitively identify causal genes, they highlight several genes of potential relevance to heart failure pathogenesis, which may be promising candidates for future mechanistic studies.
                                                The next paper is “Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-Angled Mendelian Randomization Investigation” and comes from Elias Allara, Stephen Burgess and colleagues, from the University of Cambridge and the INVENT consortium. While it has been established, therapies to lower LDL cholesterol and triglycerides lead to lower risk of coronary artery disease, it remains less clear whether these lipid lowering efforts can also reduce risk for other cardiovascular outcomes. The team set out to address this question using Mendelian randomization. They generated genetic predictors of LDL cholesterol and triglycerides using data from the Global Lipids Genetics Consortium, and then assessed whether genetically predicted increased LDL and triglycerides associated with risk of cardiovascular phenotypes using UK Biobank data. Beyond CAD, they found that higher LDL was associated with abdominal aortic aneurysm and aortic valve stenosis. High triglyceride levels were positively associated with aortic valve stenosis and hypertension, but inversely associated with venous thromboembolism and hemorrhagic stroke.
                                                High LDL cholesterol and triglycerides were also associated with heart failure, which appeared to be mediated by CAD. Their data suggests that LDL lowering may have additional cardiovascular benefits in reducing aortic aneurism and aortic stenosis, while efforts to lower triglycerides may reduce the risk of aortic valve stenosis, but could result in increased thromboembolic risk.
                                                Next up is a paper from Steven Joffe, G.L. Splansky and colleagues, from the University of Pennsylvania and Boston University, on “Preferences for Return of Genetic Results Among Participants in the Jackson Hea

Jane Ferguson:                  Hi, everyone. Welcome to episode 35 of Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center, and an associate editor at Circulation: Genomic and Precision Medicine. This episode is first airing in December 2019. Let's see what we published this month.
                                                Our first paper is an “Integrated Multiomics Approach to Identify Genetic Underpinnings of Heart Failure and Its Echocardiographic Precursors: The Framingham Heart Study” from Charlotte Anderson, Ramachandran Vasan and colleagues from Herlev and Gentofte Hospital, Denmark and Boston University.
                                                In this paper, the team investigated the genomics of heart failure, combining GWAS with methylation and gene expression data, to prioritize candidate genes. They analyzed four heart failure related and eight echocardiography related phenotypes in several thousand individuals, and then identified SNPs, methylation markers, and differential gene expression associated with those phenotypes. They then created scores for each gene, based on the rank of statistical significance, aggregated across the different omics analysis.
                                                They examined the top ranked genes for evidence of pathway enrichment, and also looked up top SNPs for PheWAS associations in UK Biobank, and examined tissue specific expression in public data. While their data cannot definitively identify causal genes, they highlight several genes of potential relevance to heart failure pathogenesis, which may be promising candidates for future mechanistic studies.
                                                The next paper is “Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-Angled Mendelian Randomization Investigation” and comes from Elias Allara, Stephen Burgess and colleagues, from the University of Cambridge and the INVENT consortium. While it has been established, therapies to lower LDL cholesterol and triglycerides lead to lower risk of coronary artery disease, it remains less clear whether these lipid lowering efforts can also reduce risk for other cardiovascular outcomes. The team set out to address this question using Mendelian randomization. They generated genetic predictors of LDL cholesterol and triglycerides using data from the Global Lipids Genetics Consortium, and then assessed whether genetically predicted increased LDL and triglycerides associated with risk of cardiovascular phenotypes using UK Biobank data. Beyond CAD, they found that higher LDL was associated with abdominal aortic aneurysm and aortic valve stenosis. High triglyceride levels were positively associated with aortic valve stenosis and hypertension, but inversely associated with venous thromboembolism and hemorrhagic stroke.
                                                High LDL cholesterol and triglycerides were also associated with heart failure, which appeared to be mediated by CAD. Their data suggests that LDL lowering may have additional cardiovascular benefits in reducing aortic aneurism and aortic stenosis, while efforts to lower triglycerides may reduce the risk of aortic valve stenosis, but could result in increased thromboembolic risk.
                                                Next up is a paper from Steven Joffe, G.L. Splansky and colleagues, from the University of Pennsylvania and Boston University, on “Preferences for Return of Genetic Results Among Participants in the Jackson Hea

10 min