The Development of a Sustained and Controlled Release Device for Pharmaceutical Proteins based on Lipid Implants Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

    • Education

The use of synthetic, biodegradable polymers is prevalently considered state-of-the-art in the development of controlled release systems for protein drugs. However, unveiled risks of protein inactivation during manufacturing and release represent a bottleneck in the final success of these systems over the last years. In this thesis, a sustained release implant device based on lipid materials for interferon alpha-2a (IFN alpha-2a) was developed, which provides high protein stability during implant preparation, storage, and drug release. Thus, the known problems of immune response associated with higher-order aggregate formation in proteinic drugs can be overcome. Adjustment of the lyophilisate formulation as well as of PEG and lipid qualities and quantities allow to control the release rate in order to realise the dosing schedule aimed for. Consequently, this device can be used as a very promising platform to deliver large pharmaceutical proteins for periods up to 1 month and even beyond.

The use of synthetic, biodegradable polymers is prevalently considered state-of-the-art in the development of controlled release systems for protein drugs. However, unveiled risks of protein inactivation during manufacturing and release represent a bottleneck in the final success of these systems over the last years. In this thesis, a sustained release implant device based on lipid materials for interferon alpha-2a (IFN alpha-2a) was developed, which provides high protein stability during implant preparation, storage, and drug release. Thus, the known problems of immune response associated with higher-order aggregate formation in proteinic drugs can be overcome. Adjustment of the lyophilisate formulation as well as of PEG and lipid qualities and quantities allow to control the release rate in order to realise the dosing schedule aimed for. Consequently, this device can be used as a very promising platform to deliver large pharmaceutical proteins for periods up to 1 month and even beyond.

Top Podcasts In Education

Miracle Fajr Podcast
Miracle Fajr Podcast
Parle bien ! Pour en finir avec la peur de parler en public !
Parle bien !
J'ai peur, donc j'y vais
Stef Bluelips
Ninho Musical
Ninho Musical
Quelle Histoire
Quelle Histoire
Le monde de Méroua
Meroua

More by Ludwig-Maximilians-Universität München

GK Strafrecht II (A-K) SoSe 2020 Satzger
Helmut Satzger
NANO-BIO-PHYSICS SYMPOSIUM 07.09.2019 Day 2
Ludwig-Maximilians-Universität München
NANO-BIO-PHYSICS SYMPOSIUM 06.09.2019 Day 1
Ludwig-Maximilians-Universität München
Center for Advanced Studies (CAS) Research Focus Global Health
Center for Advanced Studies
The Wicked Mu
Stephan Kulla und Nils Hansen
Podcast Jüdische Geschichte
Abteilung für Jüdische Geschichte und Kultur, LMU München