200 episodes

Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science.

Selecting papers by comparative results, citations and influence we educate you on the latest research.

Consider supporting us on Patreon.com/PapersRead for feedback and ideas.

Papers Read on AI Rob

    • News

Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science.

Selecting papers by comparative results, citations and influence we educate you on the latest research.

Consider supporting us on Patreon.com/PapersRead for feedback and ideas.

    Efficient Multimodal Large Language Models: A Survey

    Efficient Multimodal Large Language Models: A Survey

    In the past year, Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning. However, the extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry. Thus, studying efficient and lightweight MLLMs has enormous potential, especially in edge computing scenarios. In this survey, we provide a comprehensive and systematic review of the current state of efficient MLLMs. Specifically, we summarize the timeline of representative efficient MLLMs, research state of efficient structures and strategies, and the applications. Finally, we discuss the limitations of current efficient MLLM research and promising future directions. Please refer to our GitHub repository for more details: https://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey.2024: Yizhang Jin, Jian Li, Yexin Liu, Tianjun Gu, Kai Wu, Zhengkai Jiang, Muyang He, Bo Zhao, Xin Tan, Zhenye Gan, Yabiao Wang, Chengjie Wang, Lizhuang Mahttps://arxiv.org/pdf/2405.10739

    • 1 hr 12 min
    The Platonic Representation Hypothesis

    The Platonic Representation Hypothesis

    We argue that representations in AI models, particularly deep networks, are converging. First, we survey many examples of convergence in the literature: over time and across multiple domains, the ways by which different neural networks represent data are becoming more aligned. Next, we demonstrate convergence across data modalities: as vision models and language models get larger, they measure distance between datapoints in a more and more alike way. We hypothesize that this convergence is driving toward a shared statistical model of reality, akin to Plato's concept of an ideal reality. We term such a representation the platonic representation and discuss several possible selective pressures toward it. Finally, we discuss the implications of these trends, their limitations, and counterexamples to our analysis.2024: Minyoung Huh, Brian Cheung, Tongzhou Wang, Phillip Isolahttps://arxiv.org/pdf/2405.07987

    • 45 min
    RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment

    RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment

    Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially serious consequences. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) to address this problem, where generative models are fine-tuned with RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently enhancing the model by fine-tuning on these filtered samples. Our studies show that RAFT can effectively improve the model performance in both reward learning and other automated metrics in both large language models and diffusion models.2023: Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum, T. Zhanghttps://arxiv.org/pdf/2304.06767

    • 33 min
    LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks

    LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks

    Penetration testing, an essential component of software security testing, allows organizations to proactively identify and remediate vulnerabilities in their systems, thus bolstering their defense mechanisms against potential cyberattacks. One recent advancement in the realm of penetration testing is the utilization of Language Models (LLMs). We explore the intersection of LLMs and penetration testing to gain insight into their capabilities and challenges in the context of privilege escalation. We create an automated Linux privilege-escalation benchmark utilizing local virtual machines. We introduce an LLM-guided privilege-escalation tool designed for evaluating different LLMs and prompt strategies against our benchmark. Our results show that GPT-4 is well suited for detecting file-based exploits as it can typically solve 75-100\% of test-cases of that vulnerability class. GPT-3.5-turbo was only able to solve 25-50% of those, while local models, such as Llama2 were not able to detect any exploits. We analyze the impact of different prompt designs, the benefits of in-context learning, and the advantages of offering high-level guidance to LLMs. We discuss challenging areas for LLMs, including maintaining focus during testing, coping with errors, and finally comparing them with both stochastic parrots as well as with human hackers.2023: A. Happe, Aaron Kaplan, Jürgen Citohttps://arxiv.org/pdf/2310.11409

    • 52 min
    CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval

    CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval

    State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on.2024: Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever

    • 36 min
    A decoder-only foundation model for time-series forecasting

    A decoder-only foundation model for time-series forecasting

    Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a patched-decoder style attention model on a large time-series corpus, and can work well across different forecasting history lengths, prediction lengths and temporal granularities.2023: Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhouhttps://arxiv.org/pdf/2310.10688

    • 19 min

Top Podcasts In News

The Global Story
BBC World Service
COCKTAILS AND TAKEAWAYS
cocktails and takeaways
Global News Podcast
BBC World Service
The Daily
The New York Times
The Intelligence from The Economist
The Economist
La La + Davido
David

You Might Also Like

Latent Space: The AI Engineer Podcast — Practitioners talking LLMs, CodeGen, Agents, Multimodality, AI UX, GPU Infra and al
Alessio + swyx
Practical AI: Machine Learning, Data Science
Changelog Media
Last Week in AI
Skynet Today
Super Data Science: ML & AI Podcast with Jon Krohn
Jon Krohn
"The Cognitive Revolution" | AI Builders, Researchers, and Live Player Analysis
Erik Torenberg, Nathan Labenz
This Day in AI Podcast
Michael Sharkey, Chris Sharkey