Translating Aging

BioAge Labs
Translating Aging

On Translating Aging, we talk with the worldwide community of researchers, entrepreneurs, and investors who are moving longevity science from the lab to the clinic. We bring you a commanding view of the entire field, in the words of the people and companies who are moving it forward today. The podcast is sponsored by BioAge labs, a clinical-stage biotechnology company developing therapies to extend human healthspan by targeting the molecular causes of aging.

  1. 30 OCT

    Eliminating Pathogenic Cells to Treat Disease (Adam Freund & Remi Laberge, Arda Therapeutics)

    Adam Freund (CEO) and Remi Laberge (CTO) are the founders of Arda Therapeutics, a biotechnology company developing novel therapies that selectively eliminate harmful cell populations driving chronic diseases. In this episode, they discuss their innovative approach to treating conditions like idiopathic pulmonary fibrosis by identifying and removing specific cell types that cause tissue damage, rather than trying to modify cellular behavior through traditional drug approaches. The Finer Details: The concept of pathogenic cells as drivers of chronic diseaseHow single-cell RNA sequencing enables precise identification of harmful cell populationsArda's approach to developing targeted antibody therapeuticsAdvantages of cell elimination versus pathway modificationThe potential for intermittent dosing to improve patient quality of lifeFuture applications in aging and age-related diseases Quotes:  "Cells make up tissues. Tissues make up organisms... If you have the right cell at the right place, everything looks good. If you have the wrong cell at the wrong place, doing the wrong thing, the tissue will decay." "We position our strategy as an alternative to traditional pathway targeting... changing cell behavior by blocking a single node could be quite challenging." "This is game changer for the patient experience. If we're successful, our drug will be administered once a quarter, once every six months. But during that time, this patient feels like he is not a patient. He doesn't take a drug, he's not under treatment, and doesn't have the side effect of taking those drugs." "We think that cell depletion is a broadly applicable strategy across many chronic diseases, including potentially aging itself one day." "In 10 years from now... we will know precisely which cells to eliminate. Now, will we be allowed to do it in an otherwise healthy patient? That's a different type of question."

    46 min
  2. 9 OCT

    Precision Epigenetic Medicines to Extend Healthspan (Alex Aravanis, Moonwalk Biosciences)

    Alex Aravanis is the CEO and co-founder of Moonwalk Biosciences, a biotechnology company pioneering precision epigenetic medicines. In this episode, Chris and Alex discuss Moonwalk's innovative approach to developing a new class of medicines aimed at treating complex diseases and potentially extending human healthspan. The Finer Details: The concept of epigenetics as the "source code" for cell statesMoonwalk's technology for analyzing and modifying the epigenomeThe company's focus on cardiometabolic diseases and adiposityComparison of Moonwalk's approach to other epigenetic reprogramming strategiesPotential applications in treating obesity and metabolic disordersThe use of AI and machine learning in epigenetic researchFuture directions and challenges for Moonwalk Biosciences Quotes: Quotes have been lightly edited for clarity. "In the past, I've heard people refer to the DNA as the blueprint of biology, and I don't quite like that analogy. I think of it as more like the hardware, and the epigenome is the source code — the epigenome is responsible for the complex coordination of different genes that lead to proteins, and the temporal aspects of those so it's really how the hardware is used to make and maintain and change different cell types." "We're opening up the epigenome as a platform for drug discovery. The vast majority of the genome is not the coding regions, but it's incredibly important in controlling gene expression. So there's a lot of biology in there to inform our selection of targets, and we think that could dramatically improve both the number of interesting targets and our ability to select targets. The data that we're creating, our expertise, and our computational tools make us amongst the best in the world at using the epigenome for drug discovery." Links: Email questions, comments, and feedback to: podcast@biohagelabs.com Translating Aging on Twitter: @bioagepodcast BioAge website: https://bioagelabs.com BioAge Twitter: [@bioagelabs]

    42 min
  3. 8 MAY

    Harnessing the Secretome to Combat Age-Related Immune Dysfunction (Dr. Hans Keirstead, Immunis)

    Hans Keirstead, PhD, is the Chairman of the Board at Immunis, a biotechnology company researching and developing immune secretome products to address age-driven immune deficits. In this episode, Chris and Hans discuss Immunis' approach to targeting the aging immune system as a key driver of age-related disease. They explore the potential of immune secretome factors to restore youthful immune function, the promising results from Immunis' preclinical and early clinical studies, and the future of immune-modulating therapeutics to extend healthspan. THE FINER DETAILS The critical role of the immune system in the aging process and age-related diseaseImmunis' focus on immune precursor cell secretome factors to restore youthful immune functionPreclinical studies demonstrating the effects of Immunis' secretome product on muscle growth, metabolism, and inflammation in aged miceEarly results from Immunis' Phase 1/2a clinical trial in older adults with muscle atrophy and knee osteoarthritisThe potential for immune secretome therapeutics to treat a wide range of age-related conditions and enhance healthspanThe importance of developing affordable and accessible therapies to maximize impact QUOTES "Every manifestation of aging is immunologically mediated. It's phenomenal. When one ages, your immune system in 100% of humans gets angry, so becomes highly pro-inflammatory.""Our drug is not a stem cell. It's not an immune cell. It is the secretion set, that same secretion set that you and I have, and everyone on this earth has, that precipitously declines with age, and now we're able to restore it.""We showed that IMMUNA fundamentally changes gene expression in order to promote the expression of genes for growth and regeneration. And then it inhibits the expression of genes that inhibit growth and regeneration.""I believe that this [secretome therapeutic] is going to be taken prophylactically by most humans, every quarter or so, to keep their immune system young, keep their immune system in a prophylactically competent state.""I want this thing to be available to everyone who wants it at an extremely low price, so that we can keep people alive, so that we can keep them disease free, so they can have productive years in their golden times, in their older age." LINK TO PAPER Stem cell secretome treatment improves whole-body metabolism, reduces adiposity, and promotes skeletal muscle function in aged mice

    48 min
  4. 20 MAR

    Gene Therapies to Treat and Reverse Aging (Noah Davidsohn, Rejuvenate Bio)

    Dr. Noah Davidsohn, co-founder and CSO of Rejuvenate Bio, discusses the company's innovative work using gene therapies to treat age-related diseases in dogs and humans. In his conversation with host Chris Patil, he explains his recent groundbreaking study showing that partial cellular reprogramming with Yamanaka factors extended lifespan and healthspan in very old mice. Noah then outlines Rejuvenate's clinical pipeline, including targeting longevity pathways like FGF-21 for heart disease and combining TGF-beta inhibition with klotho for osteoarthritis. By choosing secreted factors deliverable with liver-targeted gene therapy, Rejuvenate hopes to circumvent delivery challenges. Noah conveys an inspiring vision of adding healthy years to dogs' and humans' lives. Key Topics Covered: Rejuvenate Bio's mission to reverse aging and age-related diseaseLifespan doubling in old mice with cyclic Yamanaka factor inductionControllable gene therapy system for in vivo partial reprogrammingChoice of FGF-21 for pleiotropic effects deliverable from liverLead programs for arrhythmogenic cardiomyopathy and mitral valve diseaseAdvantages of treating age-related diseases first in dogsCombination gene therapy for osteoarthritis: TGF-beta and klothoSecreted proteins enable broad effects without broad deliveryVision of expanding healthspan by "squaring the curve"Potential to keep people healthy, active and productive to 100+

    35 min
  5. 06/12/2023

    30 Years of Aging Biology: A Pioneer's Perspective (Cynthia Kenyon, VP-Aging Research at Calico Labs)

    30 Years of Aging Biology: A Pioneer’s Perspective (Cynthia Kenyon - VP Aging Biology, Calico Labs) Dr. Cynthia Kenyon reflects on the evolution of the longevity field over the 30 years since the publication of her groundbreaking paper, “A C. elegans mutant that lives twice as long as wild type,” a genetic analysis of one of the first single-gene mutations to extend lifespan in the worm. She recounts the initial excitement and skepticism around the idea of a pathway that regulates aging, and subsequent validation of this and related ideas in a wide range of model organisms. She also discusses her longstanding belief in the translational potential to improve human healthspan, and her experience as a co-founder of one of the first longevity biotech startups, Elixir Pharmaceuticals, in 1999. Based on her unique historical perspective—and with undiminished enthusiasm—she looks ahead to the unsolved mysteries that will propel the next generation of breakthroughs. Key ideas: Origins of looking at aging regulation in C. elegans in the 1990sage-1 and daf-2 as the first aging genesEarly resistance to the idea of studying aging at the molecular levelCloning of genes to reveal conserved longevity pathways (IIS/mTOR)Extending lifespan in invertebrates, and then miceThe connection between stress resistance to evolutionary theoryDr. Kenyon's initial belief in the translatability of aging scienceCo-founding Elixir Pharmaceuticals in 1999 to target agingCurrent optimism about interventions against agingNeed for public funding of large trials of natural compoundsExcitement about newest mechanisms like reprogrammingThe enduring promise of targeting core nutrient-sensing networksDevelopmental origins of aging rates and resilience Links:  Email questions, comments, and feedback to podcast@bioagelabs.com Translating Aging on Twitter: @bioagepodcast BioAge Labs Website bioagelabs.com BioAge Labs Twitter @bioagelabs BioAge Labs LinkedIn

    44 min

About

On Translating Aging, we talk with the worldwide community of researchers, entrepreneurs, and investors who are moving longevity science from the lab to the clinic. We bring you a commanding view of the entire field, in the words of the people and companies who are moving it forward today. The podcast is sponsored by BioAge labs, a clinical-stage biotechnology company developing therapies to extend human healthspan by targeting the molecular causes of aging.

You Might Also Like

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign-in or sign-up to follow shows, save episodes and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada