58 分鐘

Heisenberg's Uncertainty Principle In Our Time

    • 歷史

在此聆聽: Apple Podcasts
需訂閱並安裝 macOS 11.4 或以上版本

Melvyn Bragg and guests discuss the German physicist who, at the age of 23 and while still a student, effectively created quantum mechanics for which he later won the Nobel Prize. Werner Heisenberg made this breakthrough in a paper in 1925 when, rather than starting with an idea of where atomic particles were at any one time, he worked backwards from what he observed of atoms and their particles and the light they emitted, doing away with the idea of their continuous orbit of the nucleus and replacing this with equations. This was momentous and from this flowed what’s known as his Uncertainty Principle, the idea that, for example, you can accurately measure the position of an atomic particle or its momentum, but not both.
With
Fay Dowker
Professor of Theoretical Physics at Imperial College London
Harry Cliff
Research Fellow in Particle Physics at the University of Cambridge
And
Frank Close
Professor Emeritus of Theoretical Physics and Fellow Emeritus at Exeter College at the University of Oxford
Producer: Simon Tillotson
Reading list:
Philip Ball, Beyond Weird: Why Everything You Thought You Knew about Quantum Physics Is Different (Vintage, 2018)
John Bell, ‘Against 'measurement'’ (Physics World, Vol 3, No 8, 1990)
Mara Beller, Quantum Dialogue: The Making of a Revolution (University of Chicago Press, 2001)
David C. Cassidy, Beyond Uncertainty: Heisenberg, Quantum Physics, And The Bomb (Bellevue Literary Press, 2010)
Werner Heisenberg, Physics and Philosophy (first published 1958; Penguin Classics, 2000)
Carlo Rovelli, Helgoland: The Strange and Beautiful Story of Quantum Physics (Penguin, 2022)

Melvyn Bragg and guests discuss the German physicist who, at the age of 23 and while still a student, effectively created quantum mechanics for which he later won the Nobel Prize. Werner Heisenberg made this breakthrough in a paper in 1925 when, rather than starting with an idea of where atomic particles were at any one time, he worked backwards from what he observed of atoms and their particles and the light they emitted, doing away with the idea of their continuous orbit of the nucleus and replacing this with equations. This was momentous and from this flowed what’s known as his Uncertainty Principle, the idea that, for example, you can accurately measure the position of an atomic particle or its momentum, but not both.
With
Fay Dowker
Professor of Theoretical Physics at Imperial College London
Harry Cliff
Research Fellow in Particle Physics at the University of Cambridge
And
Frank Close
Professor Emeritus of Theoretical Physics and Fellow Emeritus at Exeter College at the University of Oxford
Producer: Simon Tillotson
Reading list:
Philip Ball, Beyond Weird: Why Everything You Thought You Knew about Quantum Physics Is Different (Vintage, 2018)
John Bell, ‘Against 'measurement'’ (Physics World, Vol 3, No 8, 1990)
Mara Beller, Quantum Dialogue: The Making of a Revolution (University of Chicago Press, 2001)
David C. Cassidy, Beyond Uncertainty: Heisenberg, Quantum Physics, And The Bomb (Bellevue Literary Press, 2010)
Werner Heisenberg, Physics and Philosophy (first published 1958; Penguin Classics, 2000)
Carlo Rovelli, Helgoland: The Strange and Beautiful Story of Quantum Physics (Penguin, 2022)

58 分鐘

熱門歷史 Podcast

時間的女兒:八卦歷史
Hazel
吳淡如人生不能沒故事
吳淡如
The Taiwan History Podcast: Formosa Files
John Ross and Eryk Michael Smith
海獅說---生活裡的小世界史
神奇海獅先生
李的歷史故事
李又宗 老麥Max
天下第一台
噗咕鳥

更多BBC的作品

6 Minute English
BBC Radio
Global News Podcast
BBC World Service
The English We Speak
BBC Radio
6 Minute Vocabulary
BBC Radio
Learning English News Review
BBC Radio
6 Minute Grammar
BBC Radio