Oracle University Podcast

Oracle Corporation

Oracle University Podcast delivers convenient, foundational training on popular Oracle technologies such as Oracle Cloud Infrastructure, Java, Autonomous Database, and more to help you jump-start or advance your career in the cloud.

  1. Cloud Data Centers: Core Concepts - Part 4

    HÁ 4 DIAS

    Cloud Data Centers: Core Concepts - Part 4

    In this episode, hosts Lois Houston and Nikita Abraham, along with Principal OCI Instructor Orlando Gentil, break down the differences between Infrastructure-as-a-Service, Platform-as-a-Service, and Software-as-a-Service.   The conversation explores how each framework influences control, cost efficiency, expansion, reliability, and contingency planning.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ----------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Nikita: Welcome to the Oracle University Podcast! I'm Nikita Abraham, Team Lead: Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hey there! Last week, we spoke about how hypervisors, virtual machines, and containers have transformed data centers. Today, we're moving on to something just as important—the main cloud models that drive modern cloud computing. Nikita: Orlando Gentil, Principal OCI Instructor at Oracle University, joins us once again for part four of our discussion on cloud data centers.  01:01 Lois: Hi Orlando! Glad to have you with us today. Can you walk us through the different types of cloud models?  Orlando: These are commonly categorized into three main service models: Infrastructure-as-a-Service, Platform-as-a-Service, and Software-as-a-Service. Let's use the idea of getting around town to understand cloud service models. IaaS is like renting a car. You don't own the car, but you control where it goes, how fast, and when to stop. In cloud terms, the provider gives you the infrastructure—virtual machines, storage, and networking—but you manage everything on top—the OS, middleware, runtime, and application. Thus, it's like using a shuttle service. You bring your bags—your code, pick your destination—your app requirements, but someone else drives and maintains the vehicle. You don't worry about the engine, fuel, or routing planning. That's the platform's job. Your focus stays on development and deployment, not on servers or patching. SaaS is like ordering a taxi. You say where you want to go and everything else is handled for you. It's the full-service experience. In the cloud, SaaS is software UXs over the web—Email, CRM, project management. No infrastructure, no updates, just productivity.  02:32 Nikita: Ok. How do the trade-offs between control and convenience differ across SaaS, PaaS, and IaaS? Orlando: With IaaS, much like renting a car, you gain high control. You are managing components like the operating system, runtime, your applications, and your data. In return, the provider expertly handles the underlying virtual machines, storage, and networking. This model gives you immense flexibility. Moving to PaaS, our shuttle service, you shift to a medium level of control but gain significantly higher convenience. Your primary focus remains on your application code and data. The provider now takes on the heavy lifting of managing the runtime environment, the operating system, the servers themselves, and even the scaling. Finally, SaaS, our taxi service, offers the highest convenience with the lowest control level. Here, your responsibility is essentially just using the application and managing your specific configurations or data within it. The cloud provider manages absolutely everything else—the entire infrastructure, the platform, and the application itself. 03:52 Nikita: One of the top concerns for cloud users is cost optimization. How can we manage this? Orlando: Each cloud service model offers distinct strategies to help you manage and reduce your spending effectively, as well as different factors that drives those costs. For Infrastructure-as-a-Service, where you have more control, optimization largely revolves around smart resource management. This means rightsizing your VMs, ensuring they are not overprovisioned, and actively turning off idle resources when not in use. Leveraging preemptible or spot instances for flexible workloads can also significantly cut costs. Your charges here are directly tied to your compute, storage, and network usage, so efficiency is key. Moving to Platform-as-a-Service, where the platform is managed for you, optimization shifts slightly. Strategies include choosing scalable platforms that can efficiently handle fluctuating demand, opting for consumption-based pricing where available, and diligently optimizing your runtime usage to minimize processing time. Costs in PaaS are typically based on your application usage, runtime hours, and storage consumed. Finally, for Software-as-a-Service where you can consume a ready-to-use application, cost optimization centers on licensing and usage. This involves consolidating tools to avoid redundant subscriptions, selecting usage-based plans if they align better with your needs, and crucially, eliminating any unused license. SaaS costs are generally based on subscription or per user fees. Understanding these nuances is essential for effective cloud financial management.  05:52 Lois: Ok. And what about scalability? How does each model handle the ability to grow and shrink with demand, without needing manual hardware changes? Orlando: How you achieve and manage that scalability varies significantly across our three service models. For Infrastructure-as-a-Service, you have the most direct control over scaling. You can implement manual or auto scaling by adding or removing virtual machines as needed, often leveraging load balancers to distribute traffic. In this model, you configure the scaling policies and parameters based on your specific workload. Moving to Platform-as-a-Service, the scaling becomes more automated and elastic. The platform automatically adjusts resources based on your application's demand, allowing it to seamlessly handle traffic spikes or dips. Here, the provider manages the underlying scaling behavior, freeing you from that operational burden. Finally, with Software-as-a-Service, scalability is largely abstracted and invisible to the user. The application scales automatically in the background, with the entire process fully managed by the provider. As a user, you simply benefit from the application's ability to handle millions of users without ever needing to worry about the infrastructure. Understanding these scaling differences is crucial for selecting the right model for your application's need.  07:34 Join the Oracle University Learning Community and tap into a vibrant network of over 1 million members, including Oracle experts and fellow learners. This dynamic community is the perfect place to grow your skills, connect with likeminded learners, and celebrate your successes. As a MyLearn subscriber, you have access to engage with your fellow learners and participate in activities in the community. Visit community.oracle.com/ou to check things out today!  08:05 Nikita: Welcome back! We've talked about cost optimization and scalability in cloud environments. But what about ensuring availability? How does that work?  Orlando: Availability refers to the ability of a system or service to remain accessible in operational, even in the face of failures or extremely high demand. The approach of achieving and managing availability, and crucially, your role versus the provider's differs greatly across each model. With Infrastructure-as-a-Service, you have the most direct control over your availability strategy. You will be responsible for designing an architecture that includes redundant VMs, deploying load balancers, and potentially even multi-region setups for disaster recovery. Your specific roles involves designing this architecture and managing your failover process and data backups. The provider's role, in turn, is to deliver the underlying infrastructure with defined service level agreements, SLAs, and health monitoring. For Platform-as-a-Service, the platform itself offers a higher degree of built-in, high availability, and automated failover. While the provider maintains the runtime platform's availability, your role shifts. You need to ensure your application's logic is designed to gracefully handle retries and potential transient failures that might occur. Finally, with Software-as-a-Service, availability is almost entirely handled for you. The provider ensures fully abstracted redundancy and failover behind the scenes. Your role becomes largely minimal, often just involving a specific application's configurations. The provider is entirely responsible for the full application uptime and the underlying high availability infrastructure. Understanding these distinct roles in ensuring availability is essential for setting expectations and designing your cloud strategy efficiently. 10:19 Lois: Building on availability, let's talk Disaster Recovery. Orlando: DR is about ensuring your systems and data can be recovered and brought back online in the event of a significant failure, whether it's a hardware crash, a natural disaster, or even human error. Just like the other aspects, the strategy and responsibilities for DR vary significantly across the cloud service models. For Infrastructure-as-a Service, you have the most direct involvement in your DR strategy. You need to design and execute custom DR plans. This involves leveraging capabilities like multi-region backups, taking VM snapshots, and setting

    14min
  2. Cloud Data Centers: Core Concepts - Part 3

    21 DE OUT.

    Cloud Data Centers: Core Concepts - Part 3

    Have you ever considered how a single server can support countless applications and workloads at once?   In this episode, hosts Lois Houston and Nikita Abraham, together with Principal OCI Instructor Orlando Gentil, explore the sophisticated technologies that make this possible in modern cloud data centers.   They discuss the roles of hypervisors, virtual machines, and containers, explaining how these innovations enable efficient resource sharing, robust security, and greater flexibility for organizations.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------- Episode Transcript:   00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hi everyone! For the last two weeks, we've been talking about different aspects of cloud data centers. In this episode, Orlando Gentil, Principal OCI Instructor at Oracle University, joins us once again to discuss how virtualization, through hypervisors, virtual machines, and containers, has transformed data centers. 00:58 Lois: That's right, Niki. We'll begin with a quick look at the history of virtualization and why it became so widely adopted. Orlando, what can you tell us about that?  Orlando: To truly grasp the power of virtualization, it's helpful to understand its journey from its humble beginnings with mainframes to its pivotal role in today's cloud computing landscape. It might surprise you, but virtualization isn't a new concept. Its roots go back to the 1960s with mainframes. In those early days, the primary goal was to isolate workloads on a single powerful mainframe, allowing different applications to run without interfering with each other. As we moved into the 1990s, the challenge shifted to underutilized physical servers. Organizations often had numerous dedicated servers, each running a single application, leading to significant waste of computing resources. This led to the emergence of virtualization as we know it today, primarily from the 1990s to the 2000s. The core idea here was to run multiple isolated operating systems on a single physical server. This innovation dramatically improved the resource utilization and laid the technical foundation for cloud computing, enabling the scalable and flexible environments we rely on today. 02:26 Nikita: Interesting. So, from an economic standpoint, what pushed traditional data centers to change and opened the door to virtualization? Orlando: In the past, running applications often meant running them on dedicated physical servers. This led to a few significant challenges. First, more hardware purchases. Every new application, every new project often required its own dedicated server. This meant constantly buying new physical hardware, which quickly escalated capital expenditure. Secondly, and hand-in-hand with more servers came higher power and cooling costs. Each physical server consumed power and generated heat, necessitating significant investment in electricity and cooling infrastructure. The more servers, the higher these operational expenses became. And finally, a major problem was unused capacity. Despite investing heavily in these physical servers, it was common for them to run well below their full capacity. Applications typically didn't need 100% of server's resources all the time. This meant we were wasting valuable compute power, memory, and storage, effectively wasting resources and diminishing the return of investment from those expensive hardware purchases. These economic pressures became a powerful incentive to find more efficient ways to utilize data center resources, setting the stage for technologies like virtualization. 04:05 Lois: I guess we can assume virtualization emerged as a financial game-changer. So, what kind of economic efficiencies did virtualization bring to the table? Orlando: From a CapEx or capital expenditure perspective, companies spent less on servers and data center expansion. From an OpEx or operational expenditure perspective, fewer machines meant lower electricity, cooling, and maintenance costs. It also sped up provisioning. Spinning a new VM took minutes, not days or weeks. That improved agility and reduced the operational workload on IT teams. It also created a more scalable, cost-efficient foundation which made virtualization not just a technical improvement, but a financial turning point for data centers. This economic efficiency is exactly what cloud providers like Oracle Cloud Infrastructure are built on, using virtualization to deliver scalable pay as you go infrastructure.  05:09 Nikita: Ok, Orlando. Let's get into the core components of virtualization. To start, what exactly is a hypervisor? Orlando: A hypervisor is a piece of software, firmware, or hardware that creates and runs virtual machines, also known as VMs. Its core function is to allow multiple virtual machines to run concurrently on a single physical host server. It acts as virtualization layer, abstracting the physical hardware resources like CPU, memory, and storage, and allocating them to each virtual machine as needed, ensuring they can operate independently and securely. 05:49 Lois: And are there types of hypervisors? Orlando: There are two primary types of hypervisors. The type 1 hypervisors, often called bare metal hypervisors, run directly on the host server's hardware. This means they interact directly with the physical resources offering high performance and security. Examples include VMware ESXi, Oracle VM Server, and KVM on Linux. They are commonly used in enterprise data centers and cloud environments. In contrast, type 2 hypervisors, also known as hosted hypervisors, run on top of an existing operating system like Windows or macOS. They act as an application within that operating system. Popular examples include VirtualBox, VMware Workstation, and Parallels. These are typically used for personal computing or development purposes, where you might run multiple operating systems on your laptop or desktop. 06:55 Nikita: We've spoken about the foundation provided by hypervisors. So, can we now talk about the virtual entities they manage: virtual machines? What exactly is a virtual machine and what are its fundamental characteristics? Orlando: A virtual machine is essentially a software-based virtual computer system that runs on a physical host computer. The magic happens with the hypervisor. The hypervisor's job is to create and manage these virtual environments, abstracting the physical hardware so that multiple VMs can share the same underlying resources without interfering with each other. Each VM operates like a completely independent computer with its own operating system and applications.  07:40 Lois: What are the benefits of this? Orlando: Each VM is isolated from the others. If one VM crashes or encounters an issue, it doesn't affect the other VMs running on the same physical host. This greatly enhances stability and security. A powerful feature is the ability to run different operating systems side-by-side on the very same physical host. You could have a Windows VM, a Linux VM, and even other specialized OS, all operating simultaneously. Consolidate workloads directly addresses the unused capacity problem. Instead of one application per physical server, you can now run multiple workloads, each in its own VM on a single powerful physical server. This dramatically improves hardware utilization, reducing the need of constant new hardware purchases and lowering power and cooling costs. And by consolidating workloads, virtualization makes it possible for cloud providers to dynamically create and manage vast pools of computing resources. This allows users to quickly provision and scale virtual servers on demand, tapping into these shared pools of CPU, memory, and storage as needed, rather than being tied to a single physical machine. 09:10 Oracle University's Race to Certification 2025 is your ticket to free training and certification in today's hottest technology. Whether you're starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That's education.oracle.com/race-to-certification-2025. 09:54 Nikita: Welcome back! Orlando, let's move on to containers. Many see them as a lighter, more agile way to build and run applications. What's your take? Orlando: A container packages an application in all its dependencies, like libraries and other binaries, into a single, lightweight executable unit. Unlike a VM, a container shares the host operating system's kernel, running on top of the container runtime process. This architectural difference provides several key advantages. Containers are incredibly portable. They can be taken virtually anywhere, from a developer's laptop to a cloud environment, and run consistently, eliminating it works on my machine issues. Because containers share the host OS kernel, they don't need to bundle a full operating system themselves. This results in significantly smaller footprints and less administration over

    15min
  3. Cloud Data Centers: Core Concepts - Part 2

    14 DE OUT.

    Cloud Data Centers: Core Concepts - Part 2

    Have you ever wondered where all your digital memories, work projects, or favorite photos actually live in the cloud?   In this episode, Lois Houston and Nikita Abraham are joined by Principal OCI Instructor Orlando Gentil to discuss cloud storage.   They explore how data is carefully organized, the different ways it can be stored, and what keeps it safe and easy to find.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------------------------   Episode Transcript:    00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Nikita: Welcome to the Oracle University Podcast! I'm Nikita Abraham, Team Lead of Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hey there! Last week, we spoke about the differences between traditional and cloud data centers, and covered components like CPU, RAM, and operating systems. If you haven't listened to the episode yet, I'd suggest going back and listening to it before you dive into this one.  Nikita: Joining us again is Orlando Gentil, Principal OCI Instructor at Oracle University, and we're going to ask him about another fundamental concept: storage. 01:04 Lois: That's right, Niki. Hi Orlando! Thanks for being with us again today. You introduced cloud data centers last week, but tell us, how is data stored and accessed in these centers?  Orlando: At a fundamental level, storage is where your data resides persistently. Data stored on a storage device is accessed by the CPU and, for specialized tasks, the GPU. The RAM acts as a high-speed intermediary, temporarily holding data that the CPU and the GPU are actively working on. This cyclical flow ensures that applications can effectively retrieve, process, and store information, forming the backbone for our computing operations in the data center. 01:52 Nikita: But how is data organized and controlled on disks? Orlando: To effectively store and manage data on physical disks, a structured approach is required, which is defined by file systems and permissions. The process began with disks. These are the raw physical storage devices. Before data can be written to them, disks are typically divided into partitions. A partition is a logical division of a physical disk that acts as if it were a separated physical disk. This allows you to organize your storage space and even install multiple operating systems on a single drive. Once partitions are created, they are formatted with a file system. 02:40 Nikita: Ok, sorry but I have to stop you there. Can you explain what a file system is? And how is data organized using a file system?  Orlando: The file system is the method and the data structure that an operating system uses to organize and manage files on storage devices. It dictates how data is named, is stored, retrieved, and managed on the disk, essentially providing the roadmap for data. Common file systems include NTFS for Windows and ext4 or XFS for Linux. Within this file system, data is organized hierarchically into directories, also known as folders. These containers help to logically group related files, which are the individual units of data, whether they are documents, images, videos, or applications. Finally, overseeing this entire organization are permissions.  03:42 Lois: And what are permissions? Orlando: Permissions define who can access a specific files and directories and what actions they are allowed to perform-- for example, read, write, or execute. This access control, often managed by user, group, and other permissions, is fundamental for security, data integrity, and multi-user environments within a data center.  04:09 Lois: Ok, now that we have a good understanding of how data is organized logically, can we talk about how data is stored locally within a server?   Orlando: Local storage refers to storage devices directly attached to a server or computer. The three common types are Hard Disk Drive. These are traditional storage devices using spinning platters to store data. They offer large capacity at a lower cost per gigabyte, making them suitable for bulk data storage when high performance isn't the top priority. Unlike hard disks, solid state drives use flash memory to store data, similar to USB drives but on a larger scale. They provide significantly faster read and write speeds, better durability, and lower power consumption than hard disks, making them ideal for operating systems, applications, and frequently accessed data. Non-Volatile Memory Express is a communication interface specifically designed for solid state that connects directly to the PCI Express bus. NVME offers even faster performance than traditional SATA-based solid state drives by reducing latency and increasing bandwidth, making it the top choice for demanding workloads that require extreme speed, such as high-performance databases and AI applications. Each type serves different performance and cost requirements within a data center. While local storage is essential for immediate access, data center also heavily rely on storage that isn't directly attached to a single server.  05:59 Lois: I'm guessing you're hinting at remote storage. Can you tell us more about that, Orlando? Orlando: Remote storage refers to data storage solutions that are not physically connected to the server or client accessing them. Instead, they are accessed over the network. This setup allows multiple clients or servers to share access to the same storage resources, centralizing data management and improving data availability. This architecture is fundamental to cloud computing, enabling vast pools of shared storage that can be dynamically provisioned to various users and applications. 06:35 Lois: Let's talk about the common forms of remote storage. Can you run us through them? Orlando: One of the most common and accessible forms of remote storage is Network Attached Storage or NAS. NAS is a dedicated file storage device connected to a network that allows multiple users and client devices to retrieve data from a centralized disk capacity. It's essentially a server dedicated to serving files. A client connects to the NAS over the network. And the NAS then provides access to files and folders. NAS devices are ideal for scenarios requiring shared file access, such as document collaboration, centralized backups, or serving media files, making them very popular in both home and enterprise environments. While NAS provides file-level access over a network, some applications, especially those requiring high performance and direct block level access to storage, need a different approach.  07:38 Nikita: And what might this approach be?  Orlando: Internet Small Computer System Interface, which provides block-level storage over an IP network. iSCSI or Internet Small Computer System Interface is a standard that allows the iSCSI protocol traditionally used for local storage to be sent over IP networks. Essentially, it enables servers to access storage devices as if they were directly attached even though they are located remotely on the network.  This means it can leverage standard ethernet infrastructure, making it a cost-effective solution for creating high performance, centralized storage accessible over an existing network. It's particularly useful for server virtualization and database environments where block-level access is preferred. While iSCSI provides block-level access over standard IP, for environments demanding even higher performance, lower latency, and greater dedicated throughput, a specialized network is often deployed.  08:47 Nikita: And what's this specialized network called? Orlando: Storage Area Network or SAN. A Storage Area Network or SAN is a high-speed network specifically designed to provide block-level access to consolidated shared storage. Unlike NAS, which provides file level access, a SAN presents a storage volumes to servers as if they were local disks, allowing for very high performance for applications like databases and virtualized environments. While iSCSI SANs use ethernet, many high-performance SANs utilize fiber channel for even faster and more reliable data transfer, making them a cornerstone of enterprise data centers where performance and availability are paramount. 09:42 Oracle University's Race to Certification 2025 is your ticket to free training and certification in today's hottest technology. Whether you're starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That's education.oracle.com/race-to-certification-2025. 10:26 Nikita: Welcome back! Orlando, are there any other popular storage paradigms we should know about? Orlando: Beyond file level and block level storage, cloud environments have popularized another flexible and highly scalable storage paradigm, object storage.  Object storage is a modern approach to storing data, treating each piece of data as a distinct, self-contained unit called an object. Unlike file systems that organize data in a hierarchy or block storage that breaks data into fixed size blocks, object storage manages data as flat, unstructured objects. Each object is stored with u

    14min
  4. 7 DE OUT.

    Cloud Data Centers: Core Concepts - Part 1

    Curious about what really goes on inside a cloud data center?   In this episode, Lois Houston and Nikita Abraham chat with Principal OCI Instructor Orlando Gentil about how cloud data centers are transforming the way organizations manage technology.   They explore the differences between traditional and cloud data centers, the roles of CPUs, GPUs, and RAM, and why operating systems and remote access matter more than ever.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services.   Nikita: Hi everyone! Today, we're covering the fundamentals you need to be successful in a cloud environment. If you're new to cloud, coming from a SaaS environment, or planning to move from on-premises to the cloud, you won't want to miss this. With us today is Orlando Gentil, Principal OCI Instructor at Oracle University. Hi Orlando! Thanks for joining us.   01:01 Lois: So Orlando, we know that Oracle has been a pioneer of cloud technologies and has been pivotal in shaping modern cloud data centers, which are different from traditional data centers. For our listeners who might be new to this, could you tell us what a traditional data center is?  Orlando: A traditional data center is a physical facility that houses an organization's mission critical IT infrastructure, including servers, storage systems, and networking equipment, all managed on site.   01:32 Nikita: So why would anyone want to use a cloud data center?  Orlando: The traditional model requires significant upfront investment in physical hardware, which you are then responsible for maintaining along with the underlying infrastructure like physical security, HVAC, backup power, and communication links.  In contrast, cloud data centers offer a more agile approach. You essentially rent the infrastructure you need, paying only for what you use. In the traditional data center, scaling resources up and down can be a slow and complex process.  On cloud data centers, scaling is automated and elastic, allowing resources to adjust dynamically based on demand. This shift allows business to move their focus from the constant upkeep of infrastructure to innovation and growth.  The move represents a shift from maintenance to momentum, enabling optimized costs and efficient scaling. This fundamental shift is how IT infrastructure is managed and consumed, and precisely what we mean by moving to the cloud.  02:39 Lois: So, when we talk about moving to the cloud, what does it really mean for businesses today?  Orlando: Moving to the cloud represents the strategic transition from managing your own on-premise hardware and software to leveraging internet-based computing services provided by a third-party.  This involves migrating your applications, data, and IT operations to a cloud environment. This transition typically aims to reduce operational overhead, increase flexibility, and enhance scalability, allowing organizations to focus more on their core business functions.    03:17 Nikita: Orlando, what's the "brain" behind all this technology?  Orlando: A CPU or Central Processing Unit is the primary component that performs most of the processing inside the computer or server. It performs calculations handling the complex mathematics and logic that drive all applications and software.  It processes instructions, running tasks, and operations in the background that are essential for any application. A CPU is critical for performance, as it directly impacts the overall speed and efficiency of the data center.  It also manages system activities, coordinating user input, various application tasks, and the flow of data throughout the system. Ultimately, the CPU drives data center workloads from basic server operations to powering cutting edge AI applications.  04:10 Lois: To better understand how a CPU achieves these functions and processes information so efficiently, I think it's important for us to grasp its fundamental architecture. Can you briefly explain the fundamental architecture of a CPU, Orlando?  Orlando: When discussing CPUs, you will often hear about sockets, cores, and threads. A socket refers to the physical connection on the motherboard where a CPU chip is installed.  A single server motherboard can have one or more sockets, each holding a CPU. A core is an independent processing unit within a CPU. Modern CPUs often have multiple cores, enabling them to handle several instructions simultaneously, thus increasing processing power.  Think of it as having multiple mini CPUs on a single chip. Threads are virtual components that allow a single CPU core to handle multiple sequence of instructions or threads concurrently. This technology, often called hyperthreading, makes a single core appear as two logical processors to the operating system, further enhancing efficiency.  05:27 Lois: Ok. And how do CPUs process commands?  Orlando: Beyond these internal components, CPUs are also designed based on different instruction set architectures which dictate how they process commands.   CPU architectures are primarily categorized in two designs-- Complex Instruction Set Computer or CISC and Reduced Instruction Set Computer or RISC. CISC processors are designed to execute complex instructions in a single step, which can reduce the number of instructions needed for a task, but often leads to a higher power consumption.  These are commonly found in traditional Intel and AMD CPUs. In contrast, RISC processors use a simpler, more streamlined set of instructions. While this might require more steps for a complex task, each step is faster and more energy efficient. This architecture is prevalent in ARM-based CPUs.  06:34 Are you looking to boost your expertise in enterprise AI? Check out the Oracle AI Agent Studio for Fusion Applications Developers course and professional certification—now available through Oracle University. This course helps you build, customize, and deploy AI Agents for Fusion HCM, SCM, and CX, with hands-on labs and real-world case studies. Ready to set yourself apart with in-demand skills and a professional credential? Learn more and get started today! Visit mylearn.oracle.com for more details.     07:09 Nikita: Welcome back! We were discussing CISC and RISC processors. So Orlando, where are they typically deployed? Are there any specific computing environments and use cases where they excel?  Orlando: On the CISC side, you will find them powering enterprise virtualization and server workloads, such as bare metal hypervisors in large databases where complex instructions can be efficiently processed. High performance computing that includes demanding simulations, intricate analysis, and many traditional machine learning systems.  Enterprise software suites and business applications like ERP, CRM, and other complex enterprise systems that benefit from fewer steps per instruction. Conversely, RISC architectures are often preferred for cloud-native workloads such as Kubernetes clusters, where simpler, faster instructions and energy efficiency are paramount for distributed computing.  Mobile device management and edge computing, including cell phones and IoT devices where power efficiency and compact design are critical. Cost optimized cloud hosting supporting distributed workloads where the cumulative energy savings and simpler design lead to more economical operations.  The choice between CISC and RISC depends heavily on the specific workload and performance requirements. While CPUs are versatile generalists, handling a broad range of tasks, modern data centers also heavily rely on another crucial processing unit for specialized workloads.  08:54 Lois: We've spoken a lot about CPUs, but our conversation would be incomplete without understanding what a Graphics Processing Unit is and why it's important. What can you tell us about GPUs, Orlando?  Orlando: A GPU or Graphics Processing Unit is distinct from a CPU. While the CPU is a generalist excelling at sequential processing and managing a wide variety of tasks, the GPU is a specialist.  It is designed specifically for parallel compute heavy tasks. This means it can perform many calculations simultaneously, making it incredibly efficient for workloads like rendering graphics, scientific simulations, and especially in areas like machine learning and artificial intelligence, where massive parallel computation is required.  In the modern data center, GPUs are increasingly vital for accelerating these specialized, data intensive workloads.   09:58 Nikita: Besides the CPU and GPU, there's another key component that collaborates with these processors to facilitate efficient data access. What role does Random Access Memory play in all of this?  Orlando: The core function of RAM is to provide faster access to information in use. Imagine your computer or server needing to retrieve data from a long-term storage device, like a hard drive. This process can be relatively slow.  RAM acts as a temporary high-speed buffer. When your CPU or GPU needs data, it first checks RAM. If the data is there, it

    17min
  5. 30 DE SET.

    AI Across Industries and the Importance of Responsible AI

    AI is reshaping industries at a rapid pace, but as its influence grows, so do the ethical concerns that come with it.   This episode examines how AI is being applied across sectors such as healthcare, finance, and retail, while also exploring the crucial issue of ensuring that these technologies align with human values.   In this conversation, Lois Houston and Nikita Abraham are joined by Hemant Gahankari, Senior Principal OCI Instructor, who emphasizes the importance of fairness, inclusivity, transparency, and accountability in AI systems.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   ---------------------------------------------------- Episode Transcript:   00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hey everyone! In our last episode, we spoke about how Oracle integrates AI capabilities into its Fusion Applications to enhance business workflows, and we focused on Predictive, Generative, and Agentic AI. Lois: Today, we'll discuss the various applications of AI. This is the final episode in our AI series, and before we close, we'll also touch upon ethical and responsible AI.  01:01 Nikita: Taking us through all of this is Senior Principal OCI Instructor Hemant Gahankari. Hi Hemant! AI is pretty much everywhere today. So, can you explain how it is being used in industries like retail, hospitality, health care, and so on?  Hemant: AI isn't just for sci-fi movies anymore. It's helping doctors spot diseases earlier and even discover new drugs faster. Imagine an AI that can look at an X-ray and say, hey, there is something sketchy here before a human even notices. Wild, right? Banks and fintech companies are all over AI. Fraud detection. AI has got it covered. Those robo advisors managing your investments? That's AI too. Ever noticed how e-commerce companies always seem to know what you want? That's AI studying your habits and nudging you towards that next purchase or binge watch. Factories are getting smarter. AI predicts when machines will fail so they can fix them before everything grinds to a halt. Less downtime, more efficiency. Everyone wins. Farming has gone high tech. Drones and AI analyze crops, optimize water use, and even help with harvesting. Self-driving cars get all the hype, but even your everyday GPS uses AI to dodge traffic jams. And if AI can save me from sitting in bumper-to-bumper traffic, I'm all for it. 02:40 Nikita: Agreed! Thanks for that overview, but let's get into specific scenarios within each industry.  Hemant: Let us take a scenario in the retail industry-- a retail clothing line with dozens of brick-and-mortar stores. Maintaining proper inventory levels in stores and regional warehouses is critical for retailers. In this low-margin business, being out of a popular product is especially challenging during sales and promotions. Managers want to delight shoppers and increase sales but without overbuying. That's where AI steps in. The retailer has multiple information sources, ranging from point-of-sale terminals to warehouse inventory systems. This data can be used to train a forecasting model that can make predictions, such as demand increase due to a holiday or planned marketing promotion, and determine the time required to acquire and distribute the extra inventory. Most ERP-based forecasting systems can produce sophisticated reports. A generative AI report writer goes further, creating custom plain-language summaries of these reports tailored for each store, instructing managers about how to maximize sales of well-stocked items while mitigating possible shortages. 04:11 Lois: Ok. How is AI being used in the hospitality sector, Hemant? Hemant: Let us take an example of a hotel chain that depends on positive ratings on social media and review websites. One common challenge they face is keeping track of online reviews, leading to missed opportunities to engage unhappy customers complaining on social media. Hotel managers don't know what's being said fast enough to address problems in real-time. Here, AI can be used to create a large data set from the tens of thousands of previously published online reviews. A textual language AI system can perform a sentiment analysis across the data to determine a baseline that can be periodically re-evaluated to spot trends. Data scientists could also build a model that correlates these textual messages and their sentiments against specific hotel locations and other factors, such as weather. Generative AI can extract valuable suggestions and insights from both positive and negative comments. 05:27 Nikita: That's great. And what about Financial Services? I know banks use AI quite often to detect fraud. Hemant: Unfortunately, fraud can creep into any part of a bank's retail operations. Fraud can happen with online transactions, from a phone or browser, and offsite ATMs too. Without trust, banks won't have customers or shareholders. Excessive fraud and delays in detecting it can violate financial industry regulations. Fraud detection combines AI technologies, such as computer vision to interpret scanned documents, document verification to authenticate IDs like driver's licenses, and machine learning to analyze patterns. These tools work together to assess the risk of fraud in each transaction within seconds. When the system detects a high risk, it triggers automated responses, such as placing holds on withdrawals or requesting additional identification from customers, to prevent fraudulent activity and protect both the business and its client. 06:42 Nikita: Wow, interesting. And how is AI being used in the health industry, especially when it comes to improving patient care? Hemant: Medical appointments can be frustrating for everyone involved—patients, receptionists, nurses, and physicians. There are many time-consuming steps, including scheduling, checking in, interactions with the doctors, checking out, and follow-ups. AI can fix this problem through electronic health records to analyze lab results, paper forms, scans, and structured data, summarizing insights for doctors with the latest research and patient history. This helps practice reduced costs, boost earnings, and deliver faster, more personalized care. 07:32 Lois: Let's take a look at one more industry. How is manufacturing using AI? Hemant: A factory that makes metal parts and other products use both visual inspections and electronic means to monitor product quality. A part that fails to meet the requirements may be reworked or repurposed, or it may need to be scrapped. The factory seeks to maximize profits and throughput by shipping as much good material as possible, while minimizing waste by detecting and handling defects early. The way AI can help here is with the quality assurance process, which creates X-ray images. This data can be interpreted by computer vision, which can learn to identify cracks and other weak spots, after being trained on a large data set. In addition, problematic or ambiguous data can be highlighted for human inspectors. 08:36 Oracle University's Race to Certification 2025 is your ticket to free training and certification in today's hottest tech. Whether you're starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That's education.oracle.com/race-to-certification-2025. 09:20 Nikita: Welcome back! AI can be used effectively to automate a variety of tasks to improve productivity, efficiency, cost savings. But I'm sure AI has its constraints too, right? Can you talk about what happens if AI isn't able to echo human ethics?  Hemant: AI can fail due to lack of ethics.  AI can spot patterns, not make moral calls. It doesn't feel guilt, understand context, or take responsibility. That is still up to us.  Decisions are only as good as the data behind them. For example, health care AI underdiagnosing women because research data was mostly male. Artificial narrow intelligence tends to automate discrimination at scale. Recruiting AI downgraded resumes just because it had a word "women's" (for example, women's chess club). Who is responsible when AI fails? For example, if a self-driving car hits someone, we cannot blame the car. Then who owns the failure? The programmer? The CEO? Can we really trust corporations or governments having programmed the use of AI not to be evil correctly? So, it's clear that AI needs oversight to function smoothly. 10:48 Lois: So, Hemant, how can we design AI in ways that respect and reflect human values? Hemant: Think of ethics like a tree. It needs all parts working together. Roots represent intent. That is our values and principles. The trunk stands for safeguards, our systems, and structures. And the branches are the outcomes we aim for. If the roots are shallow, the tree falls. If the trunk is weak, damage seeps through. The health of roots and trunk shapes the strength of our ethical outcomes. Fairness means nothing without ethical intent behind it. For example, a bank promotes its loan algorithm as fair. But it uses zip c

    19min
  6. 23 DE SET.

    Oracle AI for Fusion Apps

    Want to make AI work for your business? In today's episode, Lois Houston and Nikita Abraham continue their discussion of AI in Oracle Fusion Applications by focusing on three key AI capabilities: predictive, generative, and agentic.   Joining them is Principal Instructor Yunus Mohammed, who explains how predictive, generative, and agentic AI can optimize efficiency, support decision-making, and automate tasks—all without requiring technical expertise.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   ------------------------------------------------------------   Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Nikita: Welcome to the Oracle University Podcast! I'm Nikita Abraham, Team Lead: Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! In our last episode, we explored the essential components of the Oracle AI stack and spoke about Oracle's suite of AI services.  Nikita: Yeah, and in today's episode, we're going to go down a similar path and take a closer look at the AI functionalities within Oracle Fusion Applications. 00:53 Lois: With us today is Principal Instructor Yunus Mohammed. Hi Yunus! It's lovely to have you back with us. For anyone who doesn't already know, what are Oracle Fusion Cloud Applications?  Yunus: Oracle Fusion Applications are a suite of cloud-based enterprise applications designed to run for your business across finance, HR, supply chain, sales, services and more, all on a unified platform. They are designed to help enterprises operate smarter, faster by embedding AI directly into business process. That means better forecasts in finance, faster hiring decisions in HR, and optimized supply chains, and more personalized customer experience.  01:42 Nikita: And we know they've been built for today's fast-paced, AI-driven business environment. So, what are the different functional pillars within Oracle Fusion Apps? Yunus: The first one is the ERP, Enterprise Resource Planning, which supports financials, procurements, and project management. It's the backbone of many organizations, or day-to-day operations. HCM or Human Capital Management, handles workforce-related processes such as hiring, payroll, performance, and talent development, helping HR teams operate more efficiently. SCM, the Supply Chain Management, enables businesses to manage their logistics, inventory, and suppliers and manufacturers in the business. It's particularly critical in industries with complex operations like retail and manufacturing. The CX, which is the Customer Experience, covers the full customer life cycle, which includes sales, marketing, and service. These models help the businesses connect with their customers more personally and proactively, whether through the targeted campaigns or responsive support.  03:02 Lois: Yunus, what sets Fusion apart? Yunus: What sets Fusion apart is how these applications work seamlessly together. They share data natively and continuously improve with AI and automation, giving you not just tools, but intelligence at scale.  Oracle applications are built to be AI first, with a complete suite of finance, supply chain, manufacturing, HR, sales, service, and marketing, that is tightly coupled with our industry and data intelligence applications. The easiest and the most effective way to start building your organization's AI muscle is with AI embedded in Fusion applications. For example, if the customer needs to return a defective product, the service representative simply clicks on Ask Oracle for the answers. Since the AI agent is embedded in the application, it has contextual information about the customer, the order, and any special service, contract, or any other feature that is required for this process. The AI agent automatically figures out the return policy, including the options to send a replacement product immediately or offer a discount for the inconvenience, and also expedite shipping. Another AI agent sends a personalized email confirming details of the return, and different AI agent creates the replacement order for fulfillment and shipping. Our AI-embedded Fusion Applications can automate an end-to-end business process from service request to return order to fulfillment and shipping and then accounting.  These are pre-built and tested so that all the worry and hard work is removed from the implementation point of view. They cover the core workflows. Basically, they address tasks that form part of the organization's core workflow. User requires no technical knowledge in the scenarios.  05:16 Lois: That's great! So, you don't need to be an AI expert or a data scientist to get going. Yunus: The outcomes are super fast in business softwares and context is everything. Just having the right information isn't enough. This is about having the information in the right place at the right time for it to be instantly actionable. They are ready from day one and can be optimized over time. They are powerful out of the box and only get better with day-to-day processes and performance. 05:55 Are you working towards an Oracle Certification this year? Join us at one of our certification prep live events in the Oracle University Learning Community. Get insider tips from seasoned experts and learn from others who have already taken their certifications. Go to community.oracle.com/ou to jump-start your journey towards certification today!  06:20 Nikita: Welcome back! So, when we talk about the AI capabilities in Fusion apps, I know we have different types. Can you tell us more about them?  Yunus: Predictive AI is where it all started. These models analyze historical patterns and data to anticipate what might happen next. For example, predicting employee attrition, forecasting demand in supply chain, or flagging potential late payments in finance workflows. These are embedded into business processes to surface insights before action is needed. Then we have got the generative AI, which takes this a step more further. Instead of just providing insights, it creates content, such as auto-generating job descriptions, summarizing performance reviews, or even crafting draft responses to supplier queries. This saves time and boosts productivity across functions like HR, CX, and procurement. Last but not the least, we have got the agentic AI, which is the most advanced layer. These agents don't just provide suggestions, they take actions on behalf of the users. Think of an agent that not only recommends actions in a workflow, but also executes them, creating tasks, filling tickets, updating systems, and communicating with stakeholders, all autonomously but under user control. And importantly, many business scenarios today benefit from a blend of these types. For example, an AI assistant in Fusion HCM might predict employees turnover, which is predictive AI, generates tailored retention plans, which is generative, and it is generative AI, and initiate outreach or next steps, which is done by the process of agents, which is called agentic AI. So, Oracle integrates these capabilities in a harmonious way, enabling users to act faster, personalize at scale, and drive better business outcomes.  08:39 Lois: Ok, let's get into the specifics. How does Oracle use predictive AI across its Fusion apps, helping businesses anticipate what's coming and act proactively.  Yunus: So in HCM, things like recommended jobs, in this, candidates visiting a potential employer's website encountered an improved online experience, whereby if they have uploaded their resumes, they will be shown job opportunities that match their skills and experience mix. This helps candidates who are unsure what to search by showing them roles and titles they may not have considered. Time to hire provides an estimated as to how long it will take for an HR team to fill an open role, but this is really useful not only in terms of planning, recruitment, but also in terms of understanding whether you might need some temporary cover and for how long will it actually take the process to complete. In the process of supply chain management, the predictive AI is leveraged to revolutionize transit time and estimated time of arrival, which is called as the predictive analysis, enhancing efficiency, and optimizing operations. It can flag abnormal patterns in supply or inventory. For example, if a batch of parts is behaving differently in the production line and predict future demands, helping avoid overstocking or stockouts is a process that can be done by using the SCM predictive analysis or predictive AI. In ERPs, where you can audit your expenses, plan for future expenses, and do dynamic discounting for vendors who are likely to accept earlier payments or earlier payment discounts, it can also speed up reimbursements by automated expense entries. In CX, you have the options to go with adaptive intelligence for sales, which helps representatives prioritize the leads and the likelihood that a specific lead will close, helping representatives focus their time and effort. So predictive scheduling and routing in service delivery ensures that the right resource is assigned to the right customer at the right time, boosting operational efficiency and customer satisfaction, also known as fatigue analysis. 11:23 Lois: Now let's shift our focus to generative AI. How does Ora

    18min
  7. 16 DE SET.

    Oracle's AI Ecosystem

    In this episode, Lois Houston and Nikita Abraham are joined by Principal Instructor Yunus Mohammed to explore Oracle's approach to enterprise AI. The conversation covers the essential components of the Oracle AI stack and how each part, from the foundational infrastructure to business-specific applications, can be leveraged to support AI-driven initiatives.   They also delve into Oracle's suite of AI services, including generative AI, language processing, and image recognition.     AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   -------------------------------------------------------------   Episode Transcript:  00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hey everyone! In our last episode, we discussed why the decision to buy or build matters in the world of AI deployment. Lois: That's right, Niki. Today is all about the Oracle AI stack and how it empowers not just developers and data scientists, but everyday business users as well. Then we'll spend some time exploring Oracle AI services in detail.  01:00 Nikita: Yunus Mohammed, our Principal Instructor, is back with us today. Hi Yunus! Can you talk about the different layers in Oracle's end-to-end AI approach? Yunus: The first base layer is the foundation of AI infrastructure, the powerful compute and storage layer that enables scalable model training and inferences. Sitting above the infrastructure, we have got the data platform. This is where data is stored, cleaned, and managed. Without a reliable data foundation, AI simply can't perform. So base of AI is the data, and the reliable data gives more support to the AI to perform its job. Then, we have AI and ML services. These provide ready-to-use tools for building, training, and deploying custom machine learning models. Next, to the AI/ML services, we have got generative AI services. This is where Oracle enables advanced language models and agentic AI tools that can generate content, summarize documents, or assist users through chat interfaces. Then, we have the top layer, which is called as the applications, things like Fusion applications or industry specific solutions where AI is embedded directly into business workflows for recommendations, forecasting or customer support. Finally, Oracle integrates with a growing ecosystem of AI partners, allowing organizations to extend and enhance their AI capabilities even further. In short, Oracle doesn't just offer AI as a feature. It delivers it as a full stack capability from infrastructure to the layer of applications. 02:59 Nikita: Ok, I want to get into the core AI services offered by Oracle Cloud Infrastructure. But before we get into the finer details, broadly speaking, how do these services help businesses? Yunus: These services make AI accessible, secure, and scalable, enabling businesses to embed intelligence into workflows, improve efficiency, and reduce human effort in repetitive or data-heavy tasks. And the best part is, Oracle makes it easy to consume these through application interfaces, APIs, software development kits like SDKs, and integration with Fusion Applications. So, you can add AI where it matters without needing a data scientist team to do that work.  03:52 Lois: So, let's get down to it. The first core service is Oracle's Generative AI service. What can you tell us about it?  Yunus: This is a fully managed service that allows businesses to tap into the power of large language models. You can actually work with these models from scratch to a well-defined develop model. You can use these models for a wide range of use cases like summarizing text, generating content, answering questions, or building AI-powered chat interfaces.  04:27 Lois: So, what will I find on the OCI Generative AI Console? Yunus: OCI Generative AI Console highlights three key components. The first one is the dedicated AI cluster. These are GPU powered environments used to fine tune and host your own custom models. It gives you control and performance at scale. Then, the second point is the custom models. You can take a base language model and fine tune it using your own data, for example, company manuals or HR policies or customer interactions, which are your own personal data. You can use this to create a model that speaks your business language. And last but not the least, the endpoints. These are the interfaces through which your application connect to the model. Once deployed, your app can query the model securely and at different scales, and you don't need to be a developer to get started. Oracle offers a playground, which is a non-core environment where you can try out models, craft parameters, and test responses interactively. So overall, the generative AI service is designed to make enterprise-grade AI accessible and customizable. So, fitting directly into business processes, whether you are building a smart assistant or you're automating the content generation process.  06:00 Lois: The next key service is OCI Generative AI Agents. Can you tell us more about it?  Yunus: OCI Generative AI agents combines a natural language interface with generative AI models and enterprise data stores to answer questions and take actions. The agent remembers the context, uses previous interactions, and retrieves deeper product speech details. They aren't just static chat bots. They are context aware, grounded in business data, and able to handle multi-turns, follow-up queries with relevant accurate responses, and driving productivity and decision-making across departments like sales, support, or operations. 06:54 Oracle University's Race to Certification 2025 is your ticket to free training and certification in today's hottest tech. Whether you're starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That's education.oracle.com/race-to-certification-2025. 07:37 Nikita: Welcome back! Yunus, let's move on to the OCI Language service.  Yunus: OCI Language helps business understand and process natural language at scale. It uses pretrained models, which means they are already trained on large industry data sets and are ready to be used right away without requiring AI expertise. It detects over 100 languages, including English, Japanese, Spanish, and more. This is great for global business that receive multilingual inputs from customers. It works with identity sentiments. For different aspects of the sentence, for example, in a review like, "The food was great, but the service sucked," OCI Language can tell that food has a positive sentiment while service has a negative one. This is called aspect-based sentiment analysis, and it is more insightful than just labeling the entire text as positive or negative. Then we have got to identify key phrases representing important ideas or subjects. So, it helps in extracting these key phrases, words, or terms that capture the core messages. They help automate tagging, summarizing, or even routing of content like support tickets or emails.  In real life, the businesses are using this for customer feedback analysis, support ticket routing, social media monitoring, and even regulatory compliances.  09:21 Nikita: That's fantastic. And what about the OCI Speech service?  Yunus: The OCI Speech is an AI service that transcribes speech to text. Think of it as an AI-powered transcription engine that listens to the spoken English, whether in audio or video files, and turns it into usable and searchable and readable text. It provides timestamps, so you know exactly when something was said. A valuable feature for reviewing legal discussions, media footages, or compliance audits. OCI Speech even understands different speakers. You don't need to train this from scratch. It is pre-trained model hosted on an API. Just send your audio to the service, and you get an accurate timestamp text back in return. 10:17 Lois: I know we also have a service for object detection… called OCI Vision?  Yunus: OCI Vision uses pretrained, deep learning models to understand and analyze visual content. Just like a human might, you can upload an image or videos, and the AI can tell you what is in it and where they might be useful. There are two primary use cases, which you can use this particular OCI Vision for. One is for object detection. You have got a red color car. So OCI Vision is not just identifying that's a car. It is detecting and labeling parts of the car too, like the bumper, the wheels, the design components. This is a critical in industries like manufacturing, retail, or logistics. For example, in quality control, OCI Vision can scan product images to detect missing or defective parts automatically.  Then we have got the image classification. This is useful in scenarios like automated tagging of photos, managing digital assets, classifying this particular scene or context of this particular scene. So basically, when we talk about OCI Vision, which is actually a fully managed, no complex model training is required for this particular serv

    16min
  8. Buy or Build AI?

    9 DE SET.

    Buy or Build AI?

    How do you decide whether to buy a ready-made AI solution or build one from the ground up? The choice is more than just a technical decision; it's about aligning AI with your business goals.   In this episode, Lois Houston and Nikita Abraham are joined by Principal Instructor Yunus Mohammed to examine the critical factors influencing the buy vs. build debate. They explore real-world examples where businesses must weigh speed, customization, and long-term strategy. From a startup using a SaaS chatbot to a bank developing a custom fraud detection model, Yunus provides practical insights on when to choose one approach over the other.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   ---------------------------------------------------------------   Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:26 Nikita: Welcome to the Oracle University Podcast! I'm Nikita Abraham, Team Lead: Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! Last week, we spoke about the key stages in a typical AI workflow and how data quality, feedback loops, and business goals influence AI success. 00:50 Nikita: In today's episode, we're going to explore whether you should buy or build AI apps. Joining us again is Principal Instructor Yunus Mohammed. Hi Yunus, let's jump right in. Why does the decision of buy versus build matter? Yunus: So when we talk about buy versus build matters, we need to consider the strategic business decisions over here. They are related to the strategic decisions which the business makes, and it is evaluated in the decision lens. So the center of the decision lens is the business objective, which identifies what are we trying to solve. Then evaluate our constraints based on that particular business objective like the cost, the time, and the talent. And finally, we can decide whether we need to buy or build. But remember, there is no single correct answer. What's right for one business may not be working for the other one. 01:54 Lois: OK, can you give us examples of both approaches? Yunus: The first example where we have got a startup using a SaaS AI chatbot. Now, being a startup, they have to choose a ready-made solution, which is an AI chatbot. Now, the question is, why did they do this? Because speed and simplicity mattered more than deep customization that is required for the chatbot. So, their main aim was to have it ready in short period of time and make it more simpler. And this actually lead them to get to the market fast with low upfront cost and minimal technical complexities. But in some situations, it might be different. Like, your bank, which needs to build a fraud model. It cannot be outsourced or got from the shelf. So, they build a custom model in-house. With this custom model, they actually have a tighter control, and it is tuned to their standards. And it is created by their experts. So these two generic examples, the chatbot and the fraud model example, helps you in identifying whether I should go for a SaaS product with simple choice of selecting an existing LLM endpoint and not making any changes. Or should I go with model depending on my business and organization requirement and fine tuning that model later to define a better implementation of the scenarios or conditions that I want to do which are specific to my organization. So here you decide with the reference whether I want it to be done faster, or whether I want to be more customized to my organization. So buy it, when it is generic, or build when it is strategic. The SaaS, which is basically software as a service, refers to ready to use cloud-based applications that you access via internet. You can log into the platform and use the built-in AI, there's no setup requirement for those. Real-world examples can be Oracle Fusion apps with AI features enabled. So in-house integration means embedding AI with my own requirements into your own systems, often using custom APIs, data pipelines, and hosting it. It gives you more flexibility but requires a lot of resources and expertise. So real-world example for this scenario can be a logistics heavy company, which is integrating a customer support model into their CX. 04:41 Lois: But what are the pros and cons of each approach? Yunus: So, SaaS and Fusion Applications, basically, they offer fast deployment with little to no coding required, making them ideal for business looking to get started quickly and faster. And they typically come with lower upfront costs and are maintained by vendor, which means updates, security, support are handled externally. However, there are limited customizations and are best suited for common, repeatable use cases. Like, it can be a standard chatbot, or it can be reporting tools, or off the shelf analytics that you want to use. But the in-house or custom integration, you have more control, but it takes longer to build and requires a higher initial investment. The in-house or custom integration approach allows full customization of the features and the workflows, enabling you to design and tailor the AI system to your specific needs. 05:47 Nikita: If you're weighing the choice between buying or building, what are the critical business considerations you'd need to take into account? Yunus: So let's take one of the key business consideration which is time to market. If your goal is to launch fast, maybe you're a startup trying to gain traction quickly, then a prebuilt plug and play AI solution, for example, a chatbot or any other standard analytical tool, might be your best bet. But if you have time and you are aiming for precision, a custom model could be worth the wait. Prebuilt SaaS tools usually have lower upfront costs and a subscription model. It works with putting subscriptions. Custom solutions, on the other hand, may require a bigger investment upfront. In development, you require high talent and infrastructures, but could offer cost savings in the long run. So, ask yourself a question here. Is this AI helping us stand out in the market? If the answer is yes, you may want to build something which is your proprietary. For example, an organization would use a generic recommendation engine. It's a part of their secret sauce. Some use cases require flexibility, like you want to tailor the rules to match your specific risk criteria. So, under that scenarios, you will go for customizing. So, you will go with off the shelf solutions may not give you deep enough requirements that you want to evaluate. So, you get those and you try to customize those. You can go for customization of your AI features. The other important key business consideration is the talent and expertise that your organization have. So, the question that you need to ask in the organization is, do you have an internal team who is well versed in developing AI solutions for you? Or do you have access to one of the teams which can help you build your own proprietary products? If not, you'll go with SaaS. If you do have, then building could unlock greater control over your AI features and AI models. The next core component is your security and data privacy. If you're handling sensitive information, like for example, the health care or finance data, you might not want to send your data to the third-party tools. So in-house models offer better control over data security and compliance. When we leverage a model, it could be a prebuilt or custom model. 08:50 Oracle University is proud to announce three brand new courses that will help your teams unlock the power of Redwood—the next generation design system. Redwood enhances the user experience, boosts efficiency, and ensures consistency across Oracle Fusion Cloud Applications. Whether you're a functional lead, configuration consultant, administrator, developer, or IT support analyst, these courses will introduce you to the Redwood philosophy and its business impact. They'll also teach you how to use Visual Builder Studio to personalize and extend your Fusion environment. Get started today by visiting mylearn.oracle.com.  09:31 Nikita: Welcome back! So, getting back to what you were saying before the break, what are pre-built and custom models? Yunus: A prebuilt model is an AI solution that has already been trained by someone else, typically a tech provider. It can be used to perform a specific task like recognizing images, translating text, or detecting sentiments. You can think of it like buying a preassembled appliance. You plug it in, configure a few settings, and it's ready to use. You don't need to know how the internal parts work. You benefit from the speed, ease, and reliability of this particular model, which is a prebuilt model. But you can't easily change how it works under the hood. Whereas, a custom model is an AI solution that your organization designs and trains and tunes specifically for their business problems using their own data. You can think of it like designing your own suit. It takes more time and effort to create. It is built to your exact measurements and needs. And you have full control over how it performs and evolves. 10:53 Lois: So, when would you choose a pre-built versus a custom model? Yunus: Depending on speed, simplicity, control, and customization, you can decide on using a prebuilt or to create a custom model. Prebuilt models are like plug and

    16min
3,5
de 5
6 avaliações

Sobre

Oracle University Podcast delivers convenient, foundational training on popular Oracle technologies such as Oracle Cloud Infrastructure, Java, Autonomous Database, and more to help you jump-start or advance your career in the cloud.

Você também pode gostar de