Episode 396 Turbidity currents History of the Earth

    • Natural Sciences

As near as I can tell in the original daily series in 2014, I never addressed the topic of turbidity currents and their sedimentary product, turbidites. But they account for the distribution of vast quantities of sediment on continental shelves and slopes and elsewhere. You know what turbid water is: water with a lot of suspended sediment, usually fine mud particles. In natural submarine environments, unconsolidated sediment contains a lot of water, and when a slurry-like package of sediment liquifies, it can flow down slopes under gravity, sometimes for hundreds of kilometers. It isn’t correct to think of these streams of water and sediment as like rivers on the sea floor. Rivers transport sediment, whether boulders or sand or silt or mud, through the traction, the friction of the moving water. Turbidity flows are density flows, moving because the density of the water-sediment package is greater than the surrounding water. That means they can carry larger particles than usual. Turbidite formation. Image by Oggmus, used under Creative Commons license - source Sometimes a turbidity flow is triggered by something like an earthquake, but they can also start simply because the material reaches a threshold above which gravity takes over and the material flows down slope. The amount and size of sediment the flow can carry depends on its speed, so as the flow diminishes and wanes, first the coarse, heavier particles settle out, followed by finer and finer sediments. This results in a sediment package characterized by graded bedding – the grain size grades from coarse, with grains measuring several centimeters or more, to sand, 2 millimeters and smaller, to silt and finally to mud in the upper part of the package. Repeated turbidity flows create repeated sequences of graded bedding, and they can add up to many thousands of meters of total sedimentary rock, called turbidites. Other sedimentary structures in turbidites can include ripple marks, the result of the flow over an earlier sediment surface, as well as sole marks, which are essentially gouges in the older finer-grained top of a turbidite package by the newest, coarser grains and pebbles moving across it. There are variations, of course, but the standard package of sediment sizes and structures, dominated by the graded bedding, is called a Bauma Sequence for Arnold Bouma, the sedimentologist who described them in the 1960s. Turbidity currents are pretty common on the edges of continental shelves where the sea floor begins to steepen into the continental slope, and repeated turbidity flows can carve steep canyons in the shelf and slope. Where the flow bursts out onto the flatter abyssal sea floor, huge volumes of sediment can accumulate, especially beyond the mouths of the great rivers of the world which carry lots of sediment. When the flow is no longer constrained by a canyon or even a more gentle flow surface, the slurry tends to fan out – and the deposits are called deep abyssal ocean fans. They are often even shaped like a wide fan, with various branching channels distributing the sediment around the arms of the fan. The largest on earth today is the Bengal Fan, offshore from the mouths of the Ganges and Brahmaputra Rivers in India and Bangladesh. It’s about 3,000 km long, 1400 km wide, and more than 16 km, more than 10 miles, thick at its thickest. It’s the consequence of the collision between India and Eurasia and the uplift and erosion of the Himalaya. The scientific value of turbidites includes a record of tectonic uplift, and even seismicity given that often turbidity currents are triggered by earthquakes. They also have economic value. Within the sequence of fining-upward sediments, some portions are typically very well-sorted, clean sandstones. That means they have grains of uniform size and shape and not much other stuff to gum up the pores between the sand grains – so that makes them potentially very good reservoirs for oil and natural gas. You need

As near as I can tell in the original daily series in 2014, I never addressed the topic of turbidity currents and their sedimentary product, turbidites. But they account for the distribution of vast quantities of sediment on continental shelves and slopes and elsewhere. You know what turbid water is: water with a lot of suspended sediment, usually fine mud particles. In natural submarine environments, unconsolidated sediment contains a lot of water, and when a slurry-like package of sediment liquifies, it can flow down slopes under gravity, sometimes for hundreds of kilometers. It isn’t correct to think of these streams of water and sediment as like rivers on the sea floor. Rivers transport sediment, whether boulders or sand or silt or mud, through the traction, the friction of the moving water. Turbidity flows are density flows, moving because the density of the water-sediment package is greater than the surrounding water. That means they can carry larger particles than usual. Turbidite formation. Image by Oggmus, used under Creative Commons license - source Sometimes a turbidity flow is triggered by something like an earthquake, but they can also start simply because the material reaches a threshold above which gravity takes over and the material flows down slope. The amount and size of sediment the flow can carry depends on its speed, so as the flow diminishes and wanes, first the coarse, heavier particles settle out, followed by finer and finer sediments. This results in a sediment package characterized by graded bedding – the grain size grades from coarse, with grains measuring several centimeters or more, to sand, 2 millimeters and smaller, to silt and finally to mud in the upper part of the package. Repeated turbidity flows create repeated sequences of graded bedding, and they can add up to many thousands of meters of total sedimentary rock, called turbidites. Other sedimentary structures in turbidites can include ripple marks, the result of the flow over an earlier sediment surface, as well as sole marks, which are essentially gouges in the older finer-grained top of a turbidite package by the newest, coarser grains and pebbles moving across it. There are variations, of course, but the standard package of sediment sizes and structures, dominated by the graded bedding, is called a Bauma Sequence for Arnold Bouma, the sedimentologist who described them in the 1960s. Turbidity currents are pretty common on the edges of continental shelves where the sea floor begins to steepen into the continental slope, and repeated turbidity flows can carve steep canyons in the shelf and slope. Where the flow bursts out onto the flatter abyssal sea floor, huge volumes of sediment can accumulate, especially beyond the mouths of the great rivers of the world which carry lots of sediment. When the flow is no longer constrained by a canyon or even a more gentle flow surface, the slurry tends to fan out – and the deposits are called deep abyssal ocean fans. They are often even shaped like a wide fan, with various branching channels distributing the sediment around the arms of the fan. The largest on earth today is the Bengal Fan, offshore from the mouths of the Ganges and Brahmaputra Rivers in India and Bangladesh. It’s about 3,000 km long, 1400 km wide, and more than 16 km, more than 10 miles, thick at its thickest. It’s the consequence of the collision between India and Eurasia and the uplift and erosion of the Himalaya. The scientific value of turbidites includes a record of tectonic uplift, and even seismicity given that often turbidity currents are triggered by earthquakes. They also have economic value. Within the sequence of fining-upward sediments, some portions are typically very well-sorted, clean sandstones. That means they have grains of uniform size and shape and not much other stuff to gum up the pores between the sand grains – so that makes them potentially very good reservoirs for oil and natural gas. You need