59 min

Getting better at mining the minerals needed for clean energy Volts

    • Politics

To create a clean-energy economy, the US badly needs an advanced mining industry that can provide huge amounts of key minerals for batteries and other technologies — and it’s nowhere close to where it needs to be. In this episode, KoBold Metals CEO Kurt House describes the current state of mineral exploration, the significant changes it needs to make, and how machine learning and artificial intelligence can help it get there.
(PDF transcript)
(Active transcript)
Text transcript:
David Roberts
Building the machines and batteries needed to decarbonize the economy will require enormous amounts of a few key minerals. The proven reserves of those minerals, sitting in mines now operating, are nowhere close to enough to satisfy what is expected to be skyrocketing demand.
Without the minerals, we can’t make the clean-energy economy. And we don't know where the minerals are going to come from.
What's worse, exploring for new mineral deposits has been getting less and less efficient over the last several decades, as the amount of investment needed per successful discovery has risen. We seem to be getting worse at finding this stuff right when we badly need to be getting better.
That state of affairs has drawn in several new startups that endeavor to use machine learning and artificial intelligence to improve mining’s hit rate. The most talked-about is KoBold Metals. With financial backing from Bill Gates, Jeff Bezos, and other big-name investors, KoBold is now exploring for minerals on four continents.
To get a better handle on mining and how we can improve at it, I contacted KoBold CEO Kurt House. We talked about the projected gap between supply and demand, the somewhat primitive way current exploration works, the massive data-gathering and coordination project the company has undertaken, and the role of justice and equity in this AI-accelerated future of mining.
Kurt House, CEO of KoBold Metals, welcome to Volts. Thank you so much for coming.
Kurt House
I'm so pleased to be here. I'm a huge fan. I listen to the podcast all the time, so it's fun to talk to you live.
David Roberts
We're going to talk about something that is of great interest these days, which is finding the stuff that we need to build the clean energy economy. This is something I did a series of articles on a couple of years ago, and it's come up repeatedly over the years. People talk about possible shortages of materials as one of the bottlenecks that might slow the clean energy transition. So maybe let's just start there with setting some context, talk a little bit about the big four minerals that you focus on and sort of what we know about how much we have access to and how much we project we're going to need.
Kurt House
Perfect setup question. So, the energy transition is fundamentally about getting off fossil fuels. It's fundamentally about electrifying the economy to the greatest extent possible. So we electrify transport, all electric generation becomes renewable, et cetera, et cetera. That requires a lot of very specific materials and very specific materials because different elements have different physical properties, obviously, and they do different things better and worse than others. And some of those elements are really difficult to substitute for, for very, very deep physical reasons. So KoBold is focused on what we call "the materials of the future," and those are lithium, cobalt, copper and nickel.
That's not at all to say that there aren't other important materials for the energy transition.
David Roberts
Are those four the most important? By just mass, just, we need most of those —
Kurt House
No, by total mass, it'd probably be aluminum and steel, iron for steel. The reason these are so important, there's two orthogonal reasons that we focus on these. One is how difficult they are to substitute for in specific applications. And I'll talk about that. And then the orthogonal element to it is that they are exploration problems. So aluminum i

To create a clean-energy economy, the US badly needs an advanced mining industry that can provide huge amounts of key minerals for batteries and other technologies — and it’s nowhere close to where it needs to be. In this episode, KoBold Metals CEO Kurt House describes the current state of mineral exploration, the significant changes it needs to make, and how machine learning and artificial intelligence can help it get there.
(PDF transcript)
(Active transcript)
Text transcript:
David Roberts
Building the machines and batteries needed to decarbonize the economy will require enormous amounts of a few key minerals. The proven reserves of those minerals, sitting in mines now operating, are nowhere close to enough to satisfy what is expected to be skyrocketing demand.
Without the minerals, we can’t make the clean-energy economy. And we don't know where the minerals are going to come from.
What's worse, exploring for new mineral deposits has been getting less and less efficient over the last several decades, as the amount of investment needed per successful discovery has risen. We seem to be getting worse at finding this stuff right when we badly need to be getting better.
That state of affairs has drawn in several new startups that endeavor to use machine learning and artificial intelligence to improve mining’s hit rate. The most talked-about is KoBold Metals. With financial backing from Bill Gates, Jeff Bezos, and other big-name investors, KoBold is now exploring for minerals on four continents.
To get a better handle on mining and how we can improve at it, I contacted KoBold CEO Kurt House. We talked about the projected gap between supply and demand, the somewhat primitive way current exploration works, the massive data-gathering and coordination project the company has undertaken, and the role of justice and equity in this AI-accelerated future of mining.
Kurt House, CEO of KoBold Metals, welcome to Volts. Thank you so much for coming.
Kurt House
I'm so pleased to be here. I'm a huge fan. I listen to the podcast all the time, so it's fun to talk to you live.
David Roberts
We're going to talk about something that is of great interest these days, which is finding the stuff that we need to build the clean energy economy. This is something I did a series of articles on a couple of years ago, and it's come up repeatedly over the years. People talk about possible shortages of materials as one of the bottlenecks that might slow the clean energy transition. So maybe let's just start there with setting some context, talk a little bit about the big four minerals that you focus on and sort of what we know about how much we have access to and how much we project we're going to need.
Kurt House
Perfect setup question. So, the energy transition is fundamentally about getting off fossil fuels. It's fundamentally about electrifying the economy to the greatest extent possible. So we electrify transport, all electric generation becomes renewable, et cetera, et cetera. That requires a lot of very specific materials and very specific materials because different elements have different physical properties, obviously, and they do different things better and worse than others. And some of those elements are really difficult to substitute for, for very, very deep physical reasons. So KoBold is focused on what we call "the materials of the future," and those are lithium, cobalt, copper and nickel.
That's not at all to say that there aren't other important materials for the energy transition.
David Roberts
Are those four the most important? By just mass, just, we need most of those —
Kurt House
No, by total mass, it'd probably be aluminum and steel, iron for steel. The reason these are so important, there's two orthogonal reasons that we focus on these. One is how difficult they are to substitute for in specific applications. And I'll talk about that. And then the orthogonal element to it is that they are exploration problems. So aluminum i

59 min