56 min

Hanging Out in the Valley of Death with Michael Filler and Matthew Realff Idea Machines

    • Business

Michael Filler and Matthew Realff discuss Fundamental Manufacturing Process innovations. We explore what they are, dig into historical examples, and consider how we might enable more of them to happen. Michael and Matthew are both professors at Georgia Tech and Michael also hosts an excellent podcast about nanotechnology called Nanovation.
Our conversation centers around their paper Fundamental Manufacturing Process Innovation Changes the World. If you’re in front of a screen while you’re listening to this, you might want to pull up the paper to look at the pictures.
Key Takeaways
Sometimes you need to go down to go back up The interplay between processes and paradigms is fascinating We need to spend more time hanging out in the valley of death Links
Fundamental Manufacturing Process Innovation Changes the World(Medium)(SSRN)
Michael on Twitter
Matthew Realff's Website
Michael Filler's Website
Nanovation Podcast

Topics
- The need for the innovator to be near the process
- Continuous to discrete shifts
- Defining paradigms outlines what progress looks like
- Easy to pay attention to artifacts, hard to pay attention
- Hard to recreate processes
- The 1000x rule of process innovations
- Quality vs price improvements
- Process innovation as a discipline
- Need to take a performance hit to switch paradigms
- How to enable more fundamental manufacturing process innovations
Transcript
[00:00:00]
this conversation, I talked to Michael filler and Matthew Ralph about fundamental manufacturing process innovations. We explore what they are, dig into historical examples and consider how we might enable more of them to happen. Michael and Matthew are both professors at Georgia tech and Michael also hosts an excellent podcast about nanotechnology called innovation.
Our conversation centered around their paper called fundamental [00:01:00] manufacturing process. Innovation changes the world, which I've looked to in the show notes and highly recommend the fact that they posted it on medium. In addition to more traditional methods, give you a hint that they think a bit outside the normal academic box.
However, I actually recommend the PDF version on SSRN, which is not behind a paywall only because it has great pictures for each process that I found super helpful. If you're in front of a screen, while you're listening to this, I suspect that having them handy, it might enhance the conversation. And here we go.
the, the place that I'd love to start is, to sort of give everybody a, get them used to both of your voices and sort of assign a personality, a personality to each of you. so if each of you would say a bit about yourselves, and the. The, the sort of key bit that I've loved you to say is to, to focus on something that you believe that many people in your discipline would sort [00:02:00] of cock an eyebrow at because clearly by publishing this piece on medi you sort of identify yourself as not run of the mill professors.
 
Oh boy. Okay. So we're going to start juicy, real juicy. So I guess I'll go since I'm speaking, this is Mike filler speaking. Great to be here. so I've been a professor of chemical engineering at Georgia tech for a little over 10 years now. my research group works in nanoscale materials and device synthesis and scale up.
So for say electronics applications, Yeah. I mean, this article, which we'll talk about emerged from, you know, can I say a frustration that I had around electronics really is where it started for me, at least, that. We have all this focus on new materials or new device physics or new circuit. And I know your listeners are probably thinking about morphic computing or quantum computing, and these are all very cool things, but it seemed to me [00:03:00] that we were entirely missing the process piece.
The, how do we build computers? and, and, and circuitry. And, and so that's where this started for me was, starting to realize if we're not dealing with the process piec

Michael Filler and Matthew Realff discuss Fundamental Manufacturing Process innovations. We explore what they are, dig into historical examples, and consider how we might enable more of them to happen. Michael and Matthew are both professors at Georgia Tech and Michael also hosts an excellent podcast about nanotechnology called Nanovation.
Our conversation centers around their paper Fundamental Manufacturing Process Innovation Changes the World. If you’re in front of a screen while you’re listening to this, you might want to pull up the paper to look at the pictures.
Key Takeaways
Sometimes you need to go down to go back up The interplay between processes and paradigms is fascinating We need to spend more time hanging out in the valley of death Links
Fundamental Manufacturing Process Innovation Changes the World(Medium)(SSRN)
Michael on Twitter
Matthew Realff's Website
Michael Filler's Website
Nanovation Podcast

Topics
- The need for the innovator to be near the process
- Continuous to discrete shifts
- Defining paradigms outlines what progress looks like
- Easy to pay attention to artifacts, hard to pay attention
- Hard to recreate processes
- The 1000x rule of process innovations
- Quality vs price improvements
- Process innovation as a discipline
- Need to take a performance hit to switch paradigms
- How to enable more fundamental manufacturing process innovations
Transcript
[00:00:00]
this conversation, I talked to Michael filler and Matthew Ralph about fundamental manufacturing process innovations. We explore what they are, dig into historical examples and consider how we might enable more of them to happen. Michael and Matthew are both professors at Georgia tech and Michael also hosts an excellent podcast about nanotechnology called innovation.
Our conversation centered around their paper called fundamental [00:01:00] manufacturing process. Innovation changes the world, which I've looked to in the show notes and highly recommend the fact that they posted it on medium. In addition to more traditional methods, give you a hint that they think a bit outside the normal academic box.
However, I actually recommend the PDF version on SSRN, which is not behind a paywall only because it has great pictures for each process that I found super helpful. If you're in front of a screen, while you're listening to this, I suspect that having them handy, it might enhance the conversation. And here we go.
the, the place that I'd love to start is, to sort of give everybody a, get them used to both of your voices and sort of assign a personality, a personality to each of you. so if each of you would say a bit about yourselves, and the. The, the sort of key bit that I've loved you to say is to, to focus on something that you believe that many people in your discipline would sort [00:02:00] of cock an eyebrow at because clearly by publishing this piece on medi you sort of identify yourself as not run of the mill professors.
 
Oh boy. Okay. So we're going to start juicy, real juicy. So I guess I'll go since I'm speaking, this is Mike filler speaking. Great to be here. so I've been a professor of chemical engineering at Georgia tech for a little over 10 years now. my research group works in nanoscale materials and device synthesis and scale up.
So for say electronics applications, Yeah. I mean, this article, which we'll talk about emerged from, you know, can I say a frustration that I had around electronics really is where it started for me, at least, that. We have all this focus on new materials or new device physics or new circuit. And I know your listeners are probably thinking about morphic computing or quantum computing, and these are all very cool things, but it seemed to me [00:03:00] that we were entirely missing the process piece.
The, how do we build computers? and, and, and circuitry. And, and so that's where this started for me was, starting to realize if we're not dealing with the process piec

56 min

Top Podcasts In Business

Private Equity Podcast: Karma School of Business
BluWave
Money Rehab with Nicole Lapin
Money News Network
The Ramsey Show
Ramsey Network
REAL AF with Andy Frisella
Andy Frisella #100to0
The Money Mondays
Dan Fleyshman
The Prof G Pod with Scott Galloway
Vox Media Podcast Network