Daily Paper Cast

Jingwen Liang, Gengyu Wang

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art

  1. 1 NGÀY TRƯỚC

    The End of Manual Decoding: Towards Truly End-to-End Language Models

    🤗 Upvotes: 70 | cs.CL, cs.AI Authors: Zhichao Wang, Dongyang Ma, Xinting Huang, Deng Cai, Tian Lan, Jiahao Xu, Haitao Mi, Xiaoying Tang, Yan Wang Title: The End of Manual Decoding: Towards Truly End-to-End Language Models Arxiv: http://arxiv.org/abs/2510.26697v1 Abstract: The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.

    23 phút
  2. 1 NGÀY TRƯỚC

    Kimi Linear: An Expressive, Efficient Attention Architecture

    🤗 Upvotes: 40 | cs.CL, cs.LG Authors: Kimi Team, Yu Zhang, Zongyu Lin, Xingcheng Yao, Jiaxi Hu, Fanqing Meng, Chengyin Liu, Xin Men, Songlin Yang, Zhiyuan Li, Wentao Li, Enzhe Lu, Weizhou Liu, Yanru Chen, Weixin Xu, Longhui Yu, Yejie Wang, Yu Fan, Longguang Zhong, Enming Yuan, Dehao Zhang, Yizhi Zhang, T. Y. Liu, Haiming Wang, Shengjun Fang, Weiran He, Shaowei Liu, Yiwei Li, Jianlin Su, Jiezhong Qiu, Bo Pang, Junjie Yan, Zhejun Jiang, Weixiao Huang, Bohong Yin, Jiacheng You, Chu Wei, Zhengtao Wang, Chao Hong, Yutian Chen, Guanduo Chen, Yucheng Wang, Huabin Zheng, Feng Wang, Yibo Liu, Mengnan Dong, Zheng Zhang, Siyuan Pan, Wenhao Wu, Yuhao Wu, Longyu Guan, Jiawen Tao, Guohong Fu, Xinran Xu, Yuzhi Wang, Guokun Lai, Yuxin Wu, Xinyu Zhou, Zhilin Yang, Yulun Du Title: Kimi Linear: An Expressive, Efficient Attention Architecture Arxiv: http://arxiv.org/abs/2510.26692v1 Abstract: We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.

    23 phút
  3. 1 NGÀY TRƯỚC

    Surfer 2: The Next Generation of Cross-Platform Computer Use Agents

    🤗 Upvotes: 28 | cs.AI Authors: Mathieu Andreux, Märt Bakler, Yanael Barbier, Hamza Benchekroun, Emilien Biré, Antoine Bonnet, Riaz Bordie, Nathan Bout, Matthias Brunel, Aleix Cambray, Pierre-Louis Cedoz, Antoine Chassang, Gautier Cloix, Ethan Connelly, Alexandra Constantinou, Ramzi De Coster, Hubert de la Jonquiere, Aurélien Delfosse, Maxime Delpit, Alexis Deprez, Augustin Derupti, Mathieu Diaz, Shannon D'Souza, Julie Dujardin, Abai Edmund, Michael Eickenberg, Armand Fatalot, Wissem Felissi, Isaac Herring, Xavier Koegler, Erwan Le Jumeau de Kergaradec, Aurélien Lac, Maxime Langevin, Corentin Lauverjat, Antonio Loison, Avshalom Manevich, Axel Moyal, Axel Nguyen Kerbel, Marinela Parovic, Julien Revelle, Guillaume Richard, Mats Richter, Ronan Riochet, María Santos, Romain Savidan, Laurent Sifre, Maxime Theillard, Marc Thibault, Ivan Valentini, Tony Wu, Laura Yie, Kai Yuan, Jevgenij Zubovskij Title: Surfer 2: The Next Generation of Cross-Platform Computer Use Agents Arxiv: http://arxiv.org/abs/2510.19949v2 Abstract: Building agents that generalize across web, desktop, and mobile environments remains an open challenge, as prior systems rely on environment-specific interfaces that limit cross-platform deployment. We introduce Surfer 2, a unified architecture operating purely from visual observations that achieves state-of-the-art performance across all three environments. Surfer 2 integrates hierarchical context management, decoupled planning and execution, and self-verification with adaptive recovery, enabling reliable operation over long task horizons. Our system achieves 97.1% accuracy on WebVoyager, 69.6% on WebArena, 60.1% on OSWorld, and 87.1% on AndroidWorld, outperforming all prior systems without task-specific fine-tuning. With multiple attempts, Surfer 2 exceeds human performance on all benchmarks. These results demonstrate that systematic orchestration amplifies foundation model capabilities and enables general-purpose computer control through visual interaction alone, while calling for a next-generation vision language model to achieve Pareto-optimal cost-efficiency.

    24 phút
  4. 1 NGÀY TRƯỚC

    Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark

    🤗 Upvotes: 27 | cs.CV, cs.AI, cs.CL Authors: Ziyu Guo, Xinyan Chen, Renrui Zhang, Ruichuan An, Yu Qi, Dongzhi Jiang, Xiangtai Li, Manyuan Zhang, Hongsheng Li, Pheng-Ann Heng Title: Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark Arxiv: http://arxiv.org/abs/2510.26802v1 Abstract: Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io

    25 phút
  5. 1 NGÀY TRƯỚC

    The Quest for Generalizable Motion Generation: Data, Model, and Evaluation

    🤗 Upvotes: 25 | cs.CV Authors: Jing Lin, Ruisi Wang, Junzhe Lu, Ziqi Huang, Guorui Song, Ailing Zeng, Xian Liu, Chen Wei, Wanqi Yin, Qingping Sun, Zhongang Cai, Lei Yang, Ziwei Liu Title: The Quest for Generalizable Motion Generation: Data, Model, and Evaluation Arxiv: http://arxiv.org/abs/2510.26794v1 Abstract: Despite recent advances in 3D human motion generation (MoGen) on standard benchmarks, existing models still face a fundamental bottleneck in their generalization capability. In contrast, adjacent generative fields, most notably video generation (ViGen), have demonstrated remarkable generalization in modeling human behaviors, highlighting transferable insights that MoGen can leverage. Motivated by this observation, we present a comprehensive framework that systematically transfers knowledge from ViGen to MoGen across three key pillars: data, modeling, and evaluation. First, we introduce ViMoGen-228K, a large-scale dataset comprising 228,000 high-quality motion samples that integrates high-fidelity optical MoCap data with semantically annotated motions from web videos and synthesized samples generated by state-of-the-art ViGen models. The dataset includes both text-motion pairs and text-video-motion triplets, substantially expanding semantic diversity. Second, we propose ViMoGen, a flow-matching-based diffusion transformer that unifies priors from MoCap data and ViGen models through gated multimodal conditioning. To enhance efficiency, we further develop ViMoGen-light, a distilled variant that eliminates video generation dependencies while preserving strong generalization. Finally, we present MBench, a hierarchical benchmark designed for fine-grained evaluation across motion quality, prompt fidelity, and generalization ability. Extensive experiments show that our framework significantly outperforms existing approaches in both automatic and human evaluations. The code, data, and benchmark will be made publicly available.

    23 phút
  6. 4 NGÀY TRƯỚC

    Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations

    🤗 Upvotes: 147 | cs.CV Authors: Yujia Zhang, Xiaoyang Wu, Yixing Lao, Chengyao Wang, Zhuotao Tian, Naiyan Wang, Hengshuang Zhao Title: Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations Arxiv: http://arxiv.org/abs/2510.23607v1 Abstract: Humans learn abstract concepts through multisensory synergy, and once formed, such representations can often be recalled from a single modality. Inspired by this principle, we introduce Concerto, a minimalist simulation of human concept learning for spatial cognition, combining 3D intra-modal self-distillation with 2D-3D cross-modal joint embedding. Despite its simplicity, Concerto learns more coherent and informative spatial features, as demonstrated by zero-shot visualizations. It outperforms both standalone SOTA 2D and 3D self-supervised models by 14.2% and 4.8%, respectively, as well as their feature concatenation, in linear probing for 3D scene perception. With full fine-tuning, Concerto sets new SOTA results across multiple scene understanding benchmarks (e.g., 80.7% mIoU on ScanNet). We further present a variant of Concerto tailored for video-lifted point cloud spatial understanding, and a translator that linearly projects Concerto representations into CLIP's language space, enabling open-world perception. These results highlight that Concerto emerges spatial representations with superior fine-grained geometric and semantic consistency.

    23 phút
  7. 24 THG 10

    Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning

    🤗 Upvotes: 79 | cs.LG, cs.AI, cs.CL Authors: Ling Team, Bin Han, Caizhi Tang, Chen Liang, Donghao Zhang, Fan Yuan, Feng Zhu, Jie Gao, Jingyu Hu, Longfei Li, Meng Li, Mingyang Zhang, Peijie Jiang, Peng Jiao, Qian Zhao, Qingyuan Yang, Wenbo Shen, Xinxing Yang, Yalin Zhang, Yankun Ren, Yao Zhao, Yibo Cao, Yixuan Sun, Yue Zhang, Yuchen Fang, Zibin Lin, Zixuan Cheng, Jun Zhou Title: Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning Arxiv: http://arxiv.org/abs/2510.19338v2 Abstract: In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.

    23 phút
  8. 24 THG 10

    BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping

    🤗 Upvotes: 68 | cs.LG, cs.AI, cs.CL Authors: Zhiheng Xi, Xin Guo, Yang Nan, Enyu Zhou, Junrui Shen, Wenxiang Chen, Jiaqi Liu, Jixuan Huang, Zhihao Zhang, Honglin Guo, Xun Deng, Zhikai Lei, Miao Zheng, Guoteng Wang, Shuo Zhang, Peng Sun, Rui Zheng, Hang Yan, Tao Gui, Qi Zhang, Xuanjing Huang Title: BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping Arxiv: http://arxiv.org/abs/2510.18927v1 Abstract: Reinforcement learning (RL) has recently become the core paradigm for aligning and strengthening large language models (LLMs). Yet, applying RL in off-policy settings--where stale data from past policies are used for training--improves sample efficiency, but remains challenging: policy entropy declines sharply, optimization often becomes unstable and may even collapse. Through theoretical and empirical analysis, we identify two key insights: (i) an imbalance in optimization, where negative-advantage samples dominate the policy gradient, suppressing useful behaviors and risking gradient explosions; and (ii) the derived Entropy-Clip Rule, which reveals that the fixed clipping mechanism in PPO-like objectives systematically blocks entropy-increasing updates, thereby driving the policy toward over-exploitation at the expense of exploration. Building on these insights, we propose BAlanced Policy Optimization with Adaptive Clipping (BAPO), a simple yet effective method that dynamically adjusts clipping bounds to adaptively re-balance positive and negative contributions, preserve entropy, and stabilize RL optimization. Across diverse off-policy scenarios--including sample replay and partial rollout--BAPO achieves fast, stable, and data-efficient training. On AIME 2024 and AIME 2025 benchmarks, our 7B BAPO model surpasses open-source counterparts such as SkyWork-OR1-7B, while our 32B BAPO model not only achieves state-of-the-art results among models of the same scale but also outperforms leading proprietary systems like o3-mini and Gemini-2.5-Flash-Thinking.

    22 phút

Giới Thiệu

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art