2 min

Qu'est-ce que l'assistance gravitationnelle ‪?‬ Choses à Savoir SCIENCES

    • Science

La force gravitationnelle exercée par les planètes rend difficile le trajet rectiligne de l'une à l'autre, par une sonde ou un autre engin spatial. Et, pour la mener à bien, la dépense de carburant est très importante. Mais le phénomène de l'assistance gravitationnelle peut régler en partie ces problèmes et faciliter de tels trajets.
Des voyages dans l'espace difficiles
La gravitation complique les voyages sidéraux. En effet, un engin spatial doit posséder une très grande quantité de carburant pour s'arracher à l'attraction d'une planète. Et cette dépense sera d'autant plus importante que l'engin à propulser est plus volumineux.
Aussi doit-on souvent se contenter d'envoyer de petites sondes pour visiter les astres et les planètes du système solaire, et même au-delà. On doit aussi leur faire suivre des trajectoires bien particulières.
Il existe cependant un moyen pour envoyer dans l'espace de plus grands engins, tout en économisant du carburant.
Une force très utile
Ce moyen a pour nom l'assistance gravitationnelle. Elle a été découverte, de façon théorique, dès les années 1920. Mais l'idée n'a été développée, dans toutes ses implications pratiques, qu'une quarantaine d'années plus tard. Et c'est en 1974 que l'assistance gravitationnelle a été utilisée, de manière concrète, pour la première fois.
Elle consiste à utiliser l'attraction d'un corps céleste pour donner plus de vitesse à un engin spatial. Pour se servir au mieux de ce phénomène, l'engin doit parvenir dans ce que l'on appelle la sphère de Hill.
Il s'agit d'une zone dans laquelle une planète (la Terre par exemple) demeure dans l'attraction d'un corps céleste (le Soleil, pour poursuivre notre exemple), malgré la force gravitationnelle exercée par une troisième planète ou étoile (la Lune).
En entrant dans la sphère de Hill d'une planète, l'engin spatial prend de la vitesse, mais il en perd en s'éloignant de la planète. Pourtant, le bilan n'est pas nul. Il se produit en fait un échange d'énergie entre la planète et l'engin, qui, du fait de sa masse, profite plus à ce dernier.
C'est l'énergie spécifique liée à la rotation de la planète qui donne davantage de vitesse à l'engin spatial, sans dépense supplémentaire de carburant.
Voir Acast.com/privacy pour les informations sur la vie privée et l'opt-out.

Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

La force gravitationnelle exercée par les planètes rend difficile le trajet rectiligne de l'une à l'autre, par une sonde ou un autre engin spatial. Et, pour la mener à bien, la dépense de carburant est très importante. Mais le phénomène de l'assistance gravitationnelle peut régler en partie ces problèmes et faciliter de tels trajets.
Des voyages dans l'espace difficiles
La gravitation complique les voyages sidéraux. En effet, un engin spatial doit posséder une très grande quantité de carburant pour s'arracher à l'attraction d'une planète. Et cette dépense sera d'autant plus importante que l'engin à propulser est plus volumineux.
Aussi doit-on souvent se contenter d'envoyer de petites sondes pour visiter les astres et les planètes du système solaire, et même au-delà. On doit aussi leur faire suivre des trajectoires bien particulières.
Il existe cependant un moyen pour envoyer dans l'espace de plus grands engins, tout en économisant du carburant.
Une force très utile
Ce moyen a pour nom l'assistance gravitationnelle. Elle a été découverte, de façon théorique, dès les années 1920. Mais l'idée n'a été développée, dans toutes ses implications pratiques, qu'une quarantaine d'années plus tard. Et c'est en 1974 que l'assistance gravitationnelle a été utilisée, de manière concrète, pour la première fois.
Elle consiste à utiliser l'attraction d'un corps céleste pour donner plus de vitesse à un engin spatial. Pour se servir au mieux de ce phénomène, l'engin doit parvenir dans ce que l'on appelle la sphère de Hill.
Il s'agit d'une zone dans laquelle une planète (la Terre par exemple) demeure dans l'attraction d'un corps céleste (le Soleil, pour poursuivre notre exemple), malgré la force gravitationnelle exercée par une troisième planète ou étoile (la Lune).
En entrant dans la sphère de Hill d'une planète, l'engin spatial prend de la vitesse, mais il en perd en s'éloignant de la planète. Pourtant, le bilan n'est pas nul. Il se produit en fait un échange d'énergie entre la planète et l'engin, qui, du fait de sa masse, profite plus à ce dernier.
C'est l'énergie spécifique liée à la rotation de la planète qui donne davantage de vitesse à l'engin spatial, sans dépense supplémentaire de carburant.
Voir Acast.com/privacy pour les informations sur la vie privée et l'opt-out.

Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

2 min

Top Podcasts In Science

Hidden Brain
Hidden Brain, Shankar Vedantam
Something You Should Know
Mike Carruthers | OmniCast Media | Cumulus Podcast Network
Radiolab
WNYC Studios
Ologies with Alie Ward
Alie Ward
Reinvent Yourself with Dr. Tara
Dr. Tara Swart Bieber
StarTalk Radio
Neil deGrasse Tyson

More by Choses à Savoir

Choses à Savoir
Choses à Savoir
Choses à Savoir SCIENCES
Choses à Savoir
Choses à Savoir HISTOIRE
Choses à Savoir
Incroyable !
Choses à Savoir
Choses à Savoir SANTE
Choses à Savoir
Choses à Savoir ÉCONOMIE
Choses à Savoir