34 min

The Utility of Quantum Computing for Chemistry with Jamie Garcia The New Quantum Era

    • Physics

In this episode of The New Quantum Era, we're diving deep into the intersection of quantum computing and chemistry with Jamie Garcia, Technical Program Director for Algorithms and Scientific Partnerships Group with IBM Quantum. Jamie brings a unique perspective, having transitioned from a background in chemistry to the forefront of quantum computing. At the heart of our discussion is the deployment of the IBM Quantum computer at RPI, marking a significant milestone as the first of its kind on a university campus. Jamie shares insights into the challenges and breakthroughs in using quantum computing to push the boundaries of computational chemistry, highlighting the potential to revolutionize how we approach complex chemical reactions and materials science.
Throughout the interview, Jamie discusses the evolution of quantum computing from a theoretical novelty to a practical tool in scientific research, particularly in chemistry. We explore the limitations of classical computational methods in chemistry, such as the reliance on approximations, and how quantum computing offers the promise of more accurate and efficient simulations. Jamie also delves into the concept of "utility" in quantum computing, illustrating how IBM's quantum computers are beginning to perform tasks that challenge classical computing capabilities. The conversation further touches on the significance of quantum computing in education and research, the integration of quantum systems with high-performance computing (HPC) centers, and the future of quantum computing in addressing complex problems in chemistry and beyond.
Jamie's homepage at IBM ResearchHow Quantum Computing Could Remake Chemistry, an article by Jamie Garcia in Scientific American

In this episode of The New Quantum Era, we're diving deep into the intersection of quantum computing and chemistry with Jamie Garcia, Technical Program Director for Algorithms and Scientific Partnerships Group with IBM Quantum. Jamie brings a unique perspective, having transitioned from a background in chemistry to the forefront of quantum computing. At the heart of our discussion is the deployment of the IBM Quantum computer at RPI, marking a significant milestone as the first of its kind on a university campus. Jamie shares insights into the challenges and breakthroughs in using quantum computing to push the boundaries of computational chemistry, highlighting the potential to revolutionize how we approach complex chemical reactions and materials science.
Throughout the interview, Jamie discusses the evolution of quantum computing from a theoretical novelty to a practical tool in scientific research, particularly in chemistry. We explore the limitations of classical computational methods in chemistry, such as the reliance on approximations, and how quantum computing offers the promise of more accurate and efficient simulations. Jamie also delves into the concept of "utility" in quantum computing, illustrating how IBM's quantum computers are beginning to perform tasks that challenge classical computing capabilities. The conversation further touches on the significance of quantum computing in education and research, the integration of quantum systems with high-performance computing (HPC) centers, and the future of quantum computing in addressing complex problems in chemistry and beyond.
Jamie's homepage at IBM ResearchHow Quantum Computing Could Remake Chemistry, an article by Jamie Garcia in Scientific American

34 min