10 episódios

The Fall 2012 quarter of the Modern Physics series concentrates on Einstein’s theory of gravity and geometry: the General Theory of Relativity. Beginning with the basic ideas of Riemannian and curved space, and Minkowski’s “space-time,” we learn about Einstein’s discovery of how gravity is really the curvature of space-time. We also cover the theory of black holes and their strangely paradoxical properties. The final weeks of the course develop the essential ideas of Big Bang cosmology.

Modern Physics: General Theory of Relativity (Fall 2012‪)‬ Stanford Continuing Studies

    • Ciência

The Fall 2012 quarter of the Modern Physics series concentrates on Einstein’s theory of gravity and geometry: the General Theory of Relativity. Beginning with the basic ideas of Riemannian and curved space, and Minkowski’s “space-time,” we learn about Einstein’s discovery of how gravity is really the curvature of space-time. We also cover the theory of black holes and their strangely paradoxical properties. The final weeks of the course develop the essential ideas of Big Bang cosmology.

    • video
    10. General Theory of Relativity Lecture 10 (December 3, 2012)

    10. General Theory of Relativity Lecture 10 (December 3, 2012)

    Leonard Susskind demonstrates that Einstein's field equations become wave equations in the approximation of weak gravitational fields. The solutions for these equations create the theory of gravity waves. (December 3, 2012)

    • video
    9. General Theory of Relativity Lecture 9 (November 26, 2012)

    9. General Theory of Relativity Lecture 9 (November 26, 2012)

    Leonard Susskind derives the Einstein field equations of general relativity and demonstrates how they equate spacetime curvature as expressed by the Einstein tensor, with the energy and momentum within that spacetime as expressed by the stress–energy tensor. (November 26, 2012)

    • video
    8. General Theory of Relativity Lecture 8 (November 12, 2012)

    8. General Theory of Relativity Lecture 8 (November 12, 2012)

    Leonard Susskind develops the coordinate transformations used to create Penrose diagrams, and then uses them to describe the physics of black hole creation. (November 12, 2012)

    • video
    7. General Theory of Relativity Lecture 7 (November 5, 2012)

    7. General Theory of Relativity Lecture 7 (November 5, 2012)

    Leonard Susskind continues the discussion of black holes in depth using coordinate transformations and diagrams to develop an intuitive understanding of black hole physics. (November 5, 2012)

    • video
    6. General Theory of Relativity Lecture 6 (October 29, 2012)

    6. General Theory of Relativity Lecture 6 (October 29, 2012)

    Leonard Susskind presents the physics of black holes including the event horizon, the photon sphere, and the singularity. (October 29, 2012)

    • video
    5. General Theory of Relativity Lecture 5 (October 22, 2012)

    5. General Theory of Relativity Lecture 5 (October 22, 2012)

    Leonard Susskind derives the spacetime metric for a gravitational field, and introduces the relativistic mathematics that describe a black hole. (October 22, 2012)

Top podcasts em Ciência

Ciência Sem Fim
Estúdios Flow
Ciência Suja
Ciência Suja
Naruhodo
B9, Naruhodo, Ken Fujioka, Altay de Souza
Zoo Lógico
Agência de Podcast
Os três elementos
Os três elementos / TocaCast
Horizonte de Eventos
Sérgio Sacani Sancevero

Você Também Pode Gostar de

Daniel and Jorge Explain the Universe
iHeartPodcasts
The Science of Everything Podcast
James Fodor
The Supermassive Podcast
The Royal Astronomical Society
Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas
Sean Carroll | Wondery
StarTalk Radio
Neil deGrasse Tyson
Quanta Science Podcast
Quanta Magazine

Mais de Stanford

The Future of Everything
Stanford Engineering
Global Geopolitics
Martin Lewis
School's In
Denise Pope and Dan Schwartz / Stanford Radio
Hoover Institution
Stanford University
Machine Learning
Andrew Ng
Medcast
Stanford University