Decideo - Data Science, Big Data, Intelligence Augmentée

Philippe Nieuwbourg

Decideo est la communauté d'information et d'échange autour des outils et meilleures pratiques d'analyse de données (Machine Learning, Business Intelligence, Big Data, Science des Données, Entrepôts de données…). Véritable réseau social des professionnels de la donnée, Decideo est disponible en français www.decideo.fr et en espagnol www.decideo.com. Opinions d'experts, actualités, agenda, offres d'emploi, sont disponibles en ligne et sur les applications mobiles gratuites. Decideo is the leading user community of Business Intelligence, Data Science, Big Data and Analytics professionals. Decideo is a real social network of data driven economy, available in French www.decideo.fr, and Spanish www.decideo.com. User stories, best practices, news, software reviews, agenda, job board… are available online, and through podcast and mobile applications.

  1. #6.1 Valorisation et monétisation : quelles différences ?

    -45 MIN

    #6.1 Valorisation et monétisation : quelles différences ?

    Différences entre valorisation et monétisation Collectées, stockées et analysées depuis tant d'années, les données sont enfin adultes. Il est maintenant temps de leur permettre d'accéder à leur indépendance financière. La prochaine décennie sera celle de la valorisation et de la monétisation des données. Le phénomène a déjà commencé, il y a plusieurs années. Au travers des réseaux sociaux, nos données ont pris de la valeur, même si elle ne nous est pas toujours attribuée. Des règlements ont conduit, en particulier en Europe, à encadrer un peu l'usage de nos données personnelles. Et les techniques comptables et financières (IAS/IFRS) abordent maintenant le sujet de leur valorisation. Valoriser, c'est donner une valeur Établir la valeur d'une donnée, c'est lui adosser un chiffre et une unité de compte, qui permet de la comparer avec d'autres. L'unité de compte qui vient en premier à l'esprit c'est la monnaie, l'Euro, le dollar, le bitcoin… peu importe. Mais on pourrait en utiliser d'autres, en particulier pour mesurer des impacts sociaux ou environnementaux. Définir la valeur de quelque chose dépend fondamentalement du cadre d'analyse que l'on adopte. Il n'existe pas une définition universelle et intemporelle de la valeur, mais un ensemble de définitions cohérentes selon les disciplines, les acteurs et les usages. Une définition générale pourrait en être la suivante : l'importance relative attribuée à un objet, une action ou une ressource par un acteur donné, dans un contexte donné, au regard d'un objectif donné. En entreprise, la valeur d'un bien ou d'un service pourrait être définie de la manière suivante : la contribution mesurable ou appréciable d'un actif à l'atteinte d'objectifs économiques, opérationnels, stratégiques ou réglementaires, pour un ensemble d'acteurs identifiés. Combien valent vos données ? Combien vaut votre data warehouse ou votre data lake ? Comment les estimer, les valoriser ? C'est un sujet qui deviendra clef dans les prochaines années. Pourquoi ?  … parce que pour monétiser des données, je dois les valoriser ! Monétiser c'est transformer les data de centre de coût en centre de profit La donnée est un actif, immatériel, qui a une valeur comme nous venons de le définir. Peut-on transformer cette valeur en espèces sonnantes et trébuchantes ? Oui, cela s'appelle la monétisation. Je ne vais pas vous faire vendre votre fichier client, ou vos données personnelles ! Mais croire que seules ces données ont de la valeur pour quelqu'un c'est très réducteur.  Un centre commercial qui analyse ses visiteurs… quel pourcentage d'hommes et de femmes, combien ont un chapeau, des enfants, un parapluie, un sac en cuir ou un sac en plastique ? Un péage d'autoroutes qui analyse les marques et modèles de voiture qui entrent et sortent, la présence d'un coffre de toit, de vélos, d'une remorque ? Si ces analyses statistiques n'ont pas de valeur pour lui, elles en auront pour quelqu'un, qui sera prêt à les acheter ou les louer. L'open data était un premier pas, l'économie de la donnée est le second. Cela passe par des produits de données, des contrats associés, des espaces de données, et des places de marché (data products, data contracts, data spaces et data marketplaces). Nous étudierons tout cela. Monétiser c'est transformer la valorisation en réalité économique.

    4 min
  2. #5.10 Archives, documents, données... tant de points communs !

    02/09/2025

    #5.10 Archives, documents, données... tant de points communs !

    Margot Georges est consultante en archivistique. Elle est également productrice du podcast Archivistica, consacré à ce domaine. Archivistica est disponible sur toutes les applications de podcast et sur https://shows.acast.com/archivistica Données et documents, archives et sauvegardes, bases de données et GED... nos métiers (de l'information, et de la donnée) utilisent des termes différents. Mais donc la signification est souvent plus proche qu'on ne l'imagine. Les "professionnels de l'information" et les "professionnels des données" semblent ne pas se comprendre... mais chacun n'adopte-t-il pas une position exagérée. Quelles sont nos divergences et nos convergences. De mon point de vue, les professionnels du traitement des documents ont énormément de choses à apprendre aux professionnels de la donnée. A condition que ces derniers acceptent d'écouter, et parfois de se remettre en question. Mais l'inverse est également vrai. Les professionnels du document doivent accepter que le monde évolue, et que la transformation numérique impact le fondement de leur métier. Les professionnels de la donnée ont également des choses à partager avec eux. Je rêve d'une entreprise où gouvernance des données, archives, documentation, informatique... se rencontreront autour d'une même table pour définir une stratégie commune, au service de la valorisation du patrimoine informationnel. Et Margot souhaite elle-aussi que nos métiers dialoguent plus ensemble.

    36 min
  3. #5.5 Le nouveau SaaS, vous connaissez ?

    02/01/2025

    #5.5 Le nouveau SaaS, vous connaissez ?

    Un « nouveau » paradigme apparait, le SaaS ! Non, pas celui que vous croyez ! Vous vous dites, ça y est, on l'a perdu ! Il est resté en 1999 à la création de Salesforce ! Non, car si le SaaS est bien vivant depuis 25 ans, le nouveau SaaS pointerait le bout de son nez selon les oracles du marketing. Nous serions en train de passer du Software as a Service au Service as a Software. Que c'est beau le monde du marketing ! Allez, je vous explique. Le principe du Software as a Service a combiné depuis plus de deux décennies l'évolution technologique du cloud computing, et la migration du modèle d'achat de licences logicielles vers celui d'abonnement. Les deux éléments sont indépendants, mais en réalité ces deux évolutions ont été concomitantes. Au lieu d'acheter un logiciel, vous souscrivez à un abonnement, qui comprend le droit d'accès au logiciel, l'infrastructure technique, et les services associés. Un forfait en quelques sortes, mais payé chaque mois. À court terme, le coût en est bien plus intéressant et plus flexible, à long terme un peu moins, cependant dans un marché en évolution perpétuelle, tout le monde est gagnant. Mais voilà, l'intelligence artificielle (je ne sais pas trop ce qu'elle vient faire là), et 20 ans de SaaS ont épuisé les ressorts marketing et commerciaux. Il fallait réinventer ! Et l'on serait donc en train de remplacer le SaaS par le SaaS ! Le Service as a Software serait la combinaison d'une plate-forme technologique, et de services assurés par des humains… ou des IAs. Un bon exemple est le logiciel QuickBooks très populaire en Amérique du Nord, et qui permet à chacun de s'acquitter de ses travaux comptables et de ses déclarations fiscales. Ces dernières ne sont pas réalisées par le client, mais par un comptable, qui utilise le logiciel, complété de ses compétences. Et dans le cas de QuickBooks, le comptable pourrait être une IA. Cela fait dire à certains analystes que le développement des agents intelligents conduit cette transformation du marché. Le client ne s'abonne plus à un logiciel qu'il utilise, mais à un service que lui rend une IA, avec un peu d'humain, parfois. Si l'on reprend l'exemple de Salesforce, un commercial humain entre les données d'un nouveau client, puis les agents dans Salesforce créent automatiquement le flux d'actions de proposition, de relance, de vente. Les nouveaux SaaS remplaceraient donc certains humains chez leurs clients. Tout cela n'est pas totalement nouveau. D'abord, désolé de reparler du passé, mais cela existe depuis la nuit des temps, cela s'appelle de l'externalisation. Lorsque j'envoyais mes documents comptables à mon expert-comptable et qu'il les saisissait dans son logiciel pour ensuite réaliser mes déclarations fiscales, c'était donc déjà du Service as a Software. N'allons pas réinventer des mots qui n'apportent aucune nouveauté, juste pour être « moderne ». Tiens, clin d'œil, ils auraient pu faire comme la Modern Data Stack, et l'appeler Modern SaaS ! Plus sérieusement, la nouvelle donne vient de l'automatisation des processus. Là encore rien de nouveau, à part si cette automatisation est réalisée par des agents intelligents qui prendraient eux-mêmes, en fonction des circonstances, les bonnes décisions. Attention, pas un système expert qui se contente d'exécuter ce que l'expert a programmé – ça on le fait depuis les années 70 -, mais un véritable agent intelligent qui prendrait seul des décisions en fonction d'un entrainement à partir de données historiques. Selon Foundation Capital, cela représenterait un marché de presque 5000 milliards de dollars. Tout dépend bien sûr de ce que l'on met dedans. En tout cas, des dizaines d'entreprises sont déjà identifiées comme fournisseurs de Service as a Software. Si vous êtes un prestataire, qui réalise des travaux pour le compte de ses clients, de manière externalisée ; ne dites plus que vous faites de l'outsourcing, mais du Service as a Software, votre valorisation explosera peut-être ! Et puis, dites-moi ce que vous pensez de tout cela en commentaire.

    5 min

Notes et avis

5
sur 5
3 notes

À propos

Decideo est la communauté d'information et d'échange autour des outils et meilleures pratiques d'analyse de données (Machine Learning, Business Intelligence, Big Data, Science des Données, Entrepôts de données…). Véritable réseau social des professionnels de la donnée, Decideo est disponible en français www.decideo.fr et en espagnol www.decideo.com. Opinions d'experts, actualités, agenda, offres d'emploi, sont disponibles en ligne et sur les applications mobiles gratuites. Decideo is the leading user community of Business Intelligence, Data Science, Big Data and Analytics professionals. Decideo is a real social network of data driven economy, available in French www.decideo.fr, and Spanish www.decideo.com. User stories, best practices, news, software reviews, agenda, job board… are available online, and through podcast and mobile applications.