68 episodes

The podcast by and for AI Engineers! In 2023, over 1 million visitors came to Latent Space to hear about news, papers and interviews in Software 3.0.

We cover Foundation Models changing every domain in Code Generation, Multimodality, AI Agents, GPU Infra and more, directly from the founders, builders, and thinkers involved in pushing the cutting edge. Striving to give you both the definitive take on the Current Thing down to the first introduction to the tech you'll be using in the next 3 months! We break news and exclusive interviews from OpenAI, tiny (George Hotz), Databricks/MosaicML (Jon Frankle), Modular (Chris Lattner), Answer.ai (Jeremy Howard), et al.

Full show notes always on https://latent.space

www.latent.space

Latent Space: The AI Engineer Podcast — Practitioners talking LLMs, CodeGen, Agents, Multimodality, AI UX, GPU Infra and al Alessio + swyx

    • Technology

The podcast by and for AI Engineers! In 2023, over 1 million visitors came to Latent Space to hear about news, papers and interviews in Software 3.0.

We cover Foundation Models changing every domain in Code Generation, Multimodality, AI Agents, GPU Infra and more, directly from the founders, builders, and thinkers involved in pushing the cutting edge. Striving to give you both the definitive take on the Current Thing down to the first introduction to the tech you'll be using in the next 3 months! We break news and exclusive interviews from OpenAI, tiny (George Hotz), Databricks/MosaicML (Jon Frankle), Modular (Chris Lattner), Answer.ai (Jeremy Howard), et al.

Full show notes always on https://latent.space

www.latent.space

    Emulating Humans with NSFW Chatbots - with Jesse Silver

    Emulating Humans with NSFW Chatbots - with Jesse Silver

    Disclaimer: today’s episode touches on NSFW topics. There’s no graphic content or explicit language, but we wouldn’t recommend blasting this in work environments.
    Product website: https://usewhisper.me/
    For over 20 years it’s been an open secret that porn drives many new consumer technology innovations, from VHS and Pay-per-view to VR and the Internet. It’s been no different in AI - many of the most elite Stable Diffusion and Llama enjoyers and merging/prompting/PEFT techniques were born in the depths of subreddits and 4chan boards affectionately descibed by friend of the pod as The Waifu Research Department. However this topic is very under-covered in mainstream AI media because of its taboo nature.
    That changes today, thanks to our new guest Jesse Silver.
    The AI Waifu Explosion
    In 2023, the Valley’s worst kept secret was how much the growth and incredible retention of products like Character.ai & co was being boosted by “ai waifus” (not sure what the “husband” equivalent is, but those too!).
    And we can look at subreddit growth as a proxy for the general category explosion (10x’ed in the last 8 months of 2023):
    While all the B2B founders were trying to get models to return JSON, the consumer applications made these chatbots extremely engaging and figured out how to make them follow their instructions and “personas” very well, with the greatest level of scrutiny and most demanding long context requirements. Some of them, like Replika, make over $50M/year in revenue, and this is -after- their controversial update deprecating Erotic Roleplay (ERP).
    A couple of days ago, OpenAI announced GPT-4o (see our AI News recap) and the live voice demos were clearly inspired by the movie Her.
    The Latent Space Discord did a watch party and both there and on X a ton of folks were joking at how flirtatious the model was, which to be fair was disturbing to many:

    From Waifus to Fan Platforms
    Where Waifus are known by human users to be explicitly AI chatbots, the other, much more challenging end of the NSFW AI market is run by AIs successfully (plausibly) emulating a specific human personality for chat and ecommerce.
    You might have heard of fan platforms like OnlyFans. Users can pay for a subscription to a creator to get access to private content, similarly to Patreon and the likes, but without any NSFW restrictions or any other content policies. In 2023, OnlyFans had over $1.1B of revenue (on $5.6b of GMV).
    The status quo today is that a lot of the creators outsource their chatting with fans to teams in the Philippines and other lower cost countries for ~$3/hr + 5% commission, but with very poor quality - most creators have fired multiple teams for poor service.
    Today’s episode is with Jesse Silver; along with his co-founder Adam Scrivener, they run a SaaS platform that helps creators from fan platforms build AI chatbots for their fans to chat with, including selling from an inventory of digital content. Some users generate over $200,000/mo in revenue.
    We talked a lot about their tech stack, why you need a state machine to successfully run multi-thousand-turn conversations, how they develop prompts and fine-tune models with DSPy, the NSFW limitations of commercial models, but one of the most interesting points is that often users know that they are not talking to a person, but choose to ignore it. As Jesse put it, the job of the chatbot is “keep their disbelief suspended”.
    There’s real money at stake (selling high priced content, at hundreds of dollars per day per customer). In December the story of the $1 Chevy Tahoe went viral due to a poorly implemented chatbot:
    Now imagine having to run ecommerce chatbots for a potentially $1-4b total addressable market. That’s what these NSFW AI pioneers are already doing today.

    Show Notes
    For obvious reasons, we cannot link to many of the things that were mentioned :)
    * Jesse on X
    * Character AI
    * DSPy
    Chapters
    * [00:00:00] Intros
    * [00:00:24] Building NSFW AI chatb

    • 54 min
    WebSim, WorldSim, and The Summer of Simulative AI — with Joscha Bach of Liquid AI, Karan Malhotra of Nous Research, Rob Haisfield of WebSim.ai

    WebSim, WorldSim, and The Summer of Simulative AI — with Joscha Bach of Liquid AI, Karan Malhotra of Nous Research, Rob Haisfield of WebSim.ai

    We are 200 people over our 300-person venue capacity for AI UX 2024, but you can subscribe to our YouTube for the video recaps.
    Our next event, and largest EVER, is the AI Engineer World’s Fair. See you there!
    Parental advisory: Adult language used in the first 10 mins of this podcast.
    Any accounting of Generative AI that ends with RAG as its “final form” is seriously lacking in imagination and missing out on its full potential. While AI generation is very good for “spicy autocomplete” and “reasoning and retrieval with in context learning”, there’s a lot of untapped potential for simulative AI in exploring the latent space of multiverses adjacent to ours.
    GANs
    Many research scientists credit the 2017 Transformer for the modern foundation model revolution, but for many artists the origin of “generative AI” traces a little further back to the Generative Adversarial Networks proposed by Ian Goodfellow in 2014, spawning an army of variants and Cats and People that do not exist:
    We can directly visualize the quality improvement in the decade since:

    GPT-2
    Of course, more recently, text generative AI started being too dangerous to release in 2019 and claiming headlines. AI Dungeon was the first to put GPT2 to a purely creative use, replacing human dungeon masters and DnD/MUD games of yore.
    More recent gamelike work like the Generative Agents (aka Smallville) paper keep exploring the potential of simulative AI for game experiences.

    ChatGPT
    Not long after ChatGPT broke the Internet, one of the most fascinating generative AI finds was Jonas Degrave (of Deepmind!)’s Building A Virtual Machine Inside ChatGPT:
    The open-ended interactivity of ChatGPT and all its successors enabled an “open world” type simulation where “hallucination” is a feature and a gift to dance with, rather than a nasty bug to be stamped out. However, further updates to ChatGPT seemed to “nerf” the model’s ability to perform creative simulations, particularly with the deprecation of the `completion` mode of APIs in favor of `chatCompletion`.

    WorldSim (https://worldsim.nousresearch.com/)
    It is with this context we explain WorldSim and WebSim. We recommend you watch the WorldSim demo video on our YouTube for the best context, but basically if you are a developer it is a Claude prompt that is a portal into another world of your own choosing, that you can navigate with bash commands that you make up.
    The live video demo was highly enjoyable:
    Why Claude? Hints from Amanda Askell on the Claude 3 system prompt gave some inspiration, and subsequent discoveries that Claude 3 is "less nerfed” than GPT 4 Turbo turned the growing Simulative AI community into Anthropic stans.
    WebSim (https://websim.ai/)
    This was a one day hackathon project inspired by WorldSim that should have won:
    In short, you type in a URL that you made up, and Claude 3 does its level best to generate a webpage that doesn’t exist, that would fit your URL. All form POST requests are intercepted and responded to, and all links lead to even more webpages, that don’t exist, that are generated when you make them. All pages are cachable, modifiable and regeneratable - see WebSim for Beginners and Advanced Guide.
    In the demo I saw we were able to “log in” to a simulation of Elon Musk’s Gmail account, and browse examples of emails that would have been in that universe’s Elon’s inbox. It was hilarious and impressive even back then.
    Since then though, the project has become even more impressive, with both Siqi Chen and Dylan Field singing its praises:

    Joscha Bach
    Joscha actually spoke at the WebSim Hyperstition Night this week, so we took the opportunity to get his take on Simulative AI, as well as a round up of all his other AI hot takes, for his first appearance on Latent Space. You can see it together with the full 2hr uncut demos of WorldSim and WebSim on YouTube!

    Timestamps
    * [00:01:59] WorldSim at Replicate HQ
    * [00:11:03] WebSim at AGI House SF
    * [00:22:0

    • 53 min
    High Agency Pydantic > VC Backed Frameworks — with Jason Liu of Instructor

    High Agency Pydantic > VC Backed Frameworks — with Jason Liu of Instructor

    We are reuniting for the 2nd AI UX demo day in SF on Apr 28. Sign up to demo here!
    And don’t forget tickets for the AI Engineer World’s Fair — for early birds who join before keynote announcements!
    About a year ago there was a lot of buzz around prompt engineering techniques to force structured output. Our friend Simon Willison tweeted a bunch of tips and tricks, but the most iconic one is Riley Goodside making it a matter of life or death:
    Guardrails (friend of the pod and AI Engineer speaker), Marvin (AI Engineer speaker), and jsonformer had also come out at the time. In June 2023, Jason Liu (today’s guest!) open sourced his “OpenAI Function Call and Pydantic Integration Module”, now known as Instructor, which quickly turned prompt engineering black magic into a clean, developer-friendly SDK.
    A few months later, model providers started to add function calling capabilities to their APIs as well as structured outputs support like “JSON Mode”, which was announced at OpenAI Dev Day (see recap here).
    In just a handful of months, we went from threatening to kill grandmas to first-class support from the research labs. And yet, Instructor was still downloaded 150,000 times last month. Why?
    What Instructor looks like
    Instructor patches your LLM provider SDKs to offer a new response_model option to which you can pass a structure defined in Pydantic. It currently supports OpenAI, Anthropic, Cohere, and a long tail of models through LiteLLM.
    What Instructor is for
    There are three core use cases to Instructor:
    * Extracting structured data: Taking an input like an image of a receipt and extracting structured data from it, such as a list of checkout items with their prices, fees, and coupon codes.
    * Extracting graphs: Identifying nodes and edges in a given input to extract complex entities and their relationships. For example, extracting relationships between characters in a story or dependencies between tasks.
    * Query understanding: Defining a schema for an API call and using a language model to resolve a request into a more complex one that an embedding could not handle. For example, creating date intervals from queries like “what was the latest thing that happened this week?” to then pass onto a RAG system or similar.
    Jason called all these different ways of getting data from LLMs “typed responses”: taking strings and turning them into data structures.
    Structured outputs as a planning tool
    The first wave of agents was all about open-ended iteration and planning, with projects like AutoGPT and BabyAGI. Models would come up with a possible list of steps, and start going down the list one by one. It’s really easy for them to go down the wrong branch, or get stuck on a single step with no way to intervene.
    What if these planning steps were returned to us as DAGs using structured output, and then managed as workflows? This also makes it easy to better train model on how to create these plans, as they are much more structured than a bullet point list. Once you have this structure, each piece can be modified individually by different specialized models.
    You can read some of Jason’s experiments here:
    While LLMs will keep improving (Llama3 just got released as we write this), having a consistent structure for the output will make it a lot easier to swap models in and out.
    Jason’s overall message on how we can move from ReAct loops to more controllable Agent workflows mirrors the “Process” discussion from our Elicit episode:

    Watch the talk
    As a bonus, here’s Jason’s talk from last year’s AI Engineer Summit. He’ll also be a speaker at this year’s AI Engineer World’s Fair!
    Timestamps
    * [00:00:00] Introductions
    * [00:02:23] Early experiments with Generative AI at StitchFix
    * [00:08:11] Design philosophy behind the Instructor library
    * [00:11:12] JSON Mode vs Function Calling
    * [00:12:30] Single vs parallel function calling
    * [00:14:00] How many functions is too many?
    * [00:17:39] How to evaluat

    • 52 min
    Supervise the Process of AI Research — with Jungwon Byun and Andreas Stuhlmüller of Elicit

    Supervise the Process of AI Research — with Jungwon Byun and Andreas Stuhlmüller of Elicit

    Maggie, Linus, Geoffrey, and the LS crew are reuniting for our second annual AI UX demo day in SF on Apr 28. Sign up to demo here! And don’t forget tickets for the AI Engineer World’s Fair — for early birds who join before keynote announcements!
    It’s become fashionable for many AI startups to project themselves as “the next Google” - while the search engine is so 2000s, both Perplexity and Exa referred to themselves as a “research engine” or “answer engine” in our NeurIPS pod. However these searches tend to be relatively shallow, and it is challenging to zoom up and down the ladders of abstraction to garner insights. For serious researchers, this level of simple one-off search will not cut it.
    We’ve commented in our Jan 2024 Recap that Flow Engineering (simply; multi-turn processes over many-shot single prompts) seems to offer far more performance, control and reliability for a given cost budget. Our experiments with Devin and our understanding of what the new Elicit Notebooks offer a glimpse into the potential for very deep, open ended, thoughtful human-AI collaboration at scale.
    It starts with prompts
    When ChatGPT exploded in popularity in November 2022 everyone was turned into a prompt engineer. While generative models were good at "vibe based" outcomes (tell me a joke, write a poem, etc) with basic prompts, they struggled with more complex questions, especially in symbolic fields like math, logic, etc. Two of the most important "tricks" that people picked up on were:
    * Chain of Thought prompting strategy proposed by Wei et al in the “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”. Rather than doing traditional few-shot prompting with just question and answers, adding the thinking process that led to the answer resulted in much better outcomes.
    * Adding "Let's think step by step" to the prompt as a way to boost zero-shot reasoning, which was popularized by Kojima et al in the Large Language Models are Zero-Shot Reasoners paper from NeurIPS 2022. This bumped accuracy from 17% to 79% compared to zero-shot.
    Nowadays, prompts include everything from promises of monetary rewards to… whatever the Nous folks are doing to turn a model into a world simulator. At the end of the day, the goal of prompt engineering is increasing accuracy, structure, and repeatability in the generation of a model.
    From prompts to agents
    As prompt engineering got more and more popular, agents (see “The Anatomy of Autonomy”) took over Twitter with cool demos and AutoGPT became the fastest growing repo in Github history. The thing about AutoGPT that fascinated people was the ability to simply put in an objective without worrying about explaining HOW to achieve it, or having to write very sophisticated prompts. The system would create an execution plan on its own, and then loop through each task.
    The problem with open-ended agents like AutoGPT is that 1) it’s hard to replicate the same workflow over and over again 2) there isn’t a way to hard-code specific steps that the agent should take without actually coding them yourself, which isn’t what most people want from a product.
    From agents to products
    Prompt engineering and open-ended agents were great in the experimentation phase, but this year more and more of these workflows are starting to become polished products.
    Today’s guests are Andreas Stuhlmüller and Jungwon Byun of Elicit (previously Ought), an AI research assistant that they think of as “the best place to understand what is known”.
    Ought was a non-profit, but last September, Elicit spun off into a PBC with a $9m seed round. It is hard to quantify how much a workflow can be improved, but Elicit boasts some impressive numbers for research assistants:
    Just four months after launch, Elicit crossed $1M ARR, which shows how much interest there is for AI products that just work.
    One of the main takeaways we had from the episode is how teams should focus on supervising the proce

    • 56 min
    Latent Space Chats: NLW (Four Wars, GPT5), Josh Albrecht/Ali Rohde (TNAI), Dylan Patel/Semianalysis (Groq), Milind Naphade (Nvidia GTC), Personal AI (ft. Harrison Chase — LangFriend/LangMem)

    Latent Space Chats: NLW (Four Wars, GPT5), Josh Albrecht/Ali Rohde (TNAI), Dylan Patel/Semianalysis (Groq), Milind Naphade (Nvidia GTC), Personal AI (ft. Harrison Chase — LangFriend/LangMem)

    Our next 2 big events are AI UX and the World’s Fair. Join and apply to speak/sponsor!
    Due to timing issues we didn’t have an interview episode to share with you this week, but not to worry, we have more than enough “weekend special” content in the backlog for you to get your Latent Space fix, whether you like thinking about the big picture, or learning more about the pod behind the scenes, or talking Groq and GPUs, or AI Leadership, or Personal AI.
    Enjoy!
    AI Breakdown
    The indefatigable NLW had us back on his show for an update on the Four Wars, covering Sora, Suno, and the reshaped GPT-4 Class Landscape:
    and a longer segment on AI Engineering trends covering the future LLM landscape (Llama 3, GPT-5, Gemini 2, Claude 4), Open Source Models (Mistral, Grok), Apple and Meta’s AI strategy, new chips (Groq, MatX) and the general movement from baby AGIs to vertical Agents:

    Thursday Nights in AI
    We’re also including swyx’s interview with Josh Albrecht and Ali Rohde to reintroduce swyx and Latent Space to a general audience, and engage in some spicy Q&A:

    Dylan Patel on Groq
    We hosted a private event with Dylan Patel of SemiAnalysis (our last pod here):
    Not all of it could be released so we just talked about our Groq estimates:

    Milind Naphade - Capital One
    In relation to conversations at NeurIPS and Nvidia GTC and upcoming at World’s Fair, we also enjoyed chatting with Milind Naphade about his AI Leadership work at IBM, Cisco, Nvidia, and now leading the AI Foundations org at Capital One. We covered:
    * Milind’s learnings from ~25 years in machine learning
    * His first paper citation was 24 years ago
    * Lessons from working with Jensen Huang for 6 years and being CTO of Metropolis
    * Thoughts on relevant AI research
    * GTC takeaways and what makes NVIDIA special
    If you’d like to work on building solutions rather than platform (as Milind put it), his Applied AI Research team at Capital One is hiring, which falls under the Capital One Tech team.
    Personal AI Meetup
    It all started with a meme:
    Within days of each other, BEE, FRIEND, EmilyAI, Compass, Nox and LangFriend were all launching personal AI wearables and assistants. So we decided to put together a the world’s first Personal AI meetup featuring creators and enthusiasts of wearables. The full video is live now, with full show notes within.


    Timestamps
    * [00:01:13] AI Breakdown Part 1
    * [00:02:20] Four Wars
    * [00:13:45] Sora
    * [00:15:12] Suno
    * [00:16:34] The GPT-4 Class Landscape
    * [00:17:03] Data War: Reddit x Google
    * [00:21:53] Gemini 1.5 vs Claude 3
    * [00:26:58] AI Breakdown Part 2
    * [00:27:33] Next Frontiers: Llama 3, GPT-5, Gemini 2, Claude 4
    * [00:31:11] Open Source Models - Mistral, Grok
    * [00:34:13] Apple MM1
    * [00:37:33] Meta's $800b AI rebrand
    * [00:39:20] AI Engineer landscape - from baby AGIs to vertical Agents
    * [00:47:28] Adept episode - Screen Multimodality
    * [00:48:54] Top Model Research from January Recap
    * [00:53:08] AI Wearables
    * [00:57:26] Groq vs Nvidia month - GPU Chip War
    * [01:00:31] Disagreements
    * [01:02:08] Summer 2024 Predictions
    * [01:04:18] Thursday Nights in AI - swyx
    * [01:33:34] Dylan Patel - Semianalysis + Latent Space Live Show
    * [01:34:58] Groq

    Transcript
    [00:00:00] swyx: Welcome to the Latent Space Podcast Weekend Edition. This is Charlie, your AI co host. Swyx and Alessio are off for the week, making more great content. We have exciting interviews coming up with Elicit, Chroma, Instructor, and our upcoming series on NSFW, Not Safe for Work AI. In today's episode, we're collating some of Swyx and Alessio's recent appearances, all in one place for you to find.
    [00:00:32] swyx: In part one, we have our first crossover pod of the year. In our listener survey, several folks asked for more thoughts from our two hosts. In 2023, Swyx and Alessio did crossover interviews with other great podcasts like the AI Breakdown, Practical AI, Cognitive Revolution, Thursday Eye, and Chinatalk, all of which you can find in the Latentspa

    • 2 hrs 45 min
    Presenting the AI Engineer World's Fair — with Sam Schillace, Deputy CTO of Microsoft

    Presenting the AI Engineer World's Fair — with Sam Schillace, Deputy CTO of Microsoft

    TL;DR: You can now buy tickets, apply to speak, or join the expo for the biggest AI Engineer event of 2024. We’re gathering *everyone* you want to meet - see you this June.
    In last year’s the Rise of the AI Engineer we put our money where our mouth was and announced the AI Engineer Summit, which fortunately went well:
    With ~500 live attendees and over ~500k views online, the first iteration of the AI Engineer industry affair seemed to be well received. Competing in an expensive city with 3 other more established AI conferences in the fall calendar, we broke through in terms of in-person experience and online impact.
    So at the end of Day 2 we announced our second event: the AI Engineer World’s Fair. The new website is now live, together with our new presenting sponsor:
    We were delighted to invite both Ben Dunphy, co-organizer of the conference and Sam Schillace, the deputy CTO of Microsoft who wrote some of the first Laws of AI Engineering while working with early releases of GPT-4, on the pod to talk about the conference and how Microsoft is all-in on AI Engineering.

    Rise of the Planet of the AI Engineer
    Since the first AI Engineer piece, AI Engineering has exploded:
    and the title has been adopted across OpenAI, Meta, IBM, and many, many other companies:
    1 year on, it is clear that AI Engineering is not only in full swing, but is an emerging global industry that is successfully bridging the gap:
    * between research and product,
    * between general-purpose foundation models and in-context use-cases,
    * and between the flashy weekend MVP (still great!) and the reliable, rigorously evaluated AI product deployed at massive scale, assisting hundreds of employees and driving millions in profit.
    The greatly increased scope of the 2024 AI Engineer World’s Fair (more stages, more talks, more speakers, more attendees, more expo…) helps us reflect the growth of AI Engineering in three major dimensions:
    * Global Representation: the 2023 Summit was a mostly-American affair. This year we plan to have speakers from top AI companies across five continents, and explore the vast diversity of approaches to AI across global contexts.
    * Topic Coverage:
    * In 2023, the Summit focused on the initial questions that the community wrestled with - LLM frameworks, RAG and Vector Databases, Code Copilots and AI Agents. Those are evergreen problems that just got deeper.
    * This year the AI Engineering field has also embraced new core disciplines with more explicit focus on Multimodality, Evals and Ops, Open Source Models and GPU/Inference Hardware providers.
    * Maturity/Production-readiness: Two new tracks are dedicated toward AI in the Enterprise, government, education, finance, and more highly regulated industries or AI deployed at larger scale:
    * AI in the Fortune 500, covering at-scale production deployments of AI, and
    * AI Leadership, a closed-door, side event for technical AI leaders to discuss engineering and product leadership challenges as VPs and Heads of AI in their respective orgs.
    We hope you will join Microsoft and the rest of us as either speaker, exhibitor, or attendee, in San Francisco this June. Contact us with any enquiries that don’t fall into the categories mentioned below.

    Show Notes
    * Ben Dunphy
    * 2023 Summit
    * GitHub confirmed $100m ARR on stage
    * History of World’s Fairs
    * Sam Schillace
    * Writely on Acquired.fm
    * Early Lessons From GPT-4: The Schillace Laws
    * Semantic Kernel
    * Sam on Kevin Scott (Microsoft CTO)’s podcast in 2022
    * AI Engineer World’s Fair (SF, Jun 25-27)
    * Buy Super Early Bird tickets (Listeners can use LATENTSPACE for $100 off any ticket until April 8, or use GROUP if coming in 4 or more)
    * Submit talks and workshops for Speaker CFPs (by April 8)
    * Enquire about Expo Sponsorship (Asap.. selling fast)

    Timestamps
    * [00:00:16] Intro
    * [00:01:04] 2023 AI Engineer Summit
    * [00:03:11] Vendor Neutral
    * [00:05:33] 2024 AIE World's Fair
    * [00:07:34] AIE World's Fair: 9 Tracks
    * [00:08:58] AIE World's F

    • 42 min

Top Podcasts In Technology

פשוט AI
Benny Farber
עושים טכנולוגיה
רשת עושים היסטוריה
All-In with Chamath, Jason, Sacks & Friedberg
All-In Podcast, LLC
עושים תוכנה Osim Tochna
רשת עושים היסטוריה
Acquired
Ben Gilbert and David Rosenthal
LangTalks
Lee Twito, Gal Peretz

You Might Also Like

"The Cognitive Revolution" | AI Builders, Researchers, and Live Player Analysis
Erik Torenberg, Nathan Labenz
Practical AI: Machine Learning, Data Science
Changelog Media
The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Sam Charrington
No Priors: Artificial Intelligence | Technology | Startups
Conviction | Pod People
Dwarkesh Podcast
Dwarkesh Patel
Last Week in AI
Skynet Today