250 episodios

Die Universitätsbibliothek (UB) verfügt über ein umfangreiches Archiv an elektronischen Medien, das von Volltextsammlungen über Zeitungsarchive, Wörterbücher und Enzyklopädien bis hin zu ausführlichen Bibliographien und mehr als 1000 Datenbanken reicht. Auf iTunes U stellt die UB unter anderem eine Auswahl an Dissertationen der Doktorandinnen und Doktoranden an der LMU bereit. (Dies ist der 4. von 6 Teilen der Sammlung 'Fakultät für Biologie - Digitale Hochschulschriften der LMU'.)

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06 Ludwig-Maximilians-Universität München

    • Educación

Die Universitätsbibliothek (UB) verfügt über ein umfangreiches Archiv an elektronischen Medien, das von Volltextsammlungen über Zeitungsarchive, Wörterbücher und Enzyklopädien bis hin zu ausführlichen Bibliographien und mehr als 1000 Datenbanken reicht. Auf iTunes U stellt die UB unter anderem eine Auswahl an Dissertationen der Doktorandinnen und Doktoranden an der LMU bereit. (Dies ist der 4. von 6 Teilen der Sammlung 'Fakultät für Biologie - Digitale Hochschulschriften der LMU'.)

    Structural analysis and therapeutic modulation of axonal remodeling following spinal cord injury

    Structural analysis and therapeutic modulation of axonal remodeling following spinal cord injury

    Airborne and spaceborne LiDAR data as a measurement tool for peatland topography, peat fire burn depth, and forest above ground biomass in Central Kalimantan, Indonesia

    Airborne and spaceborne LiDAR data as a measurement tool for peatland topography, peat fire burn depth, and forest above ground biomass in Central Kalimantan, Indonesia

    Characterization of Neuropeptide S (NPS) in view of its potential as a novel anxiolytic therapy for anxiety disorders

    Characterization of Neuropeptide S (NPS) in view of its potential as a novel anxiolytic therapy for anxiety disorders

    Anxiety disorders, such as posttraumatic stress disorder (PTSD), are characterized by a high prevalence and debilitating symptoms. However, the current first-line treatment for these conditions, which consists of selective serotonin reuptake inhibitors (SSRIs) and cognitive behavioral therapy, alongside symptomatic treatment with benzodiazepines, does not represent by far a functional solution for all affected patients. Therefore, identifying and characterizing novel candidates for alternative anxiolytic therapies are a crucial focus of psychiatric and neurobiological research.
    This study focuses on Neuropeptide S (NPS), a newly identified endogenous neuropeptide that has been shown to exert strong anxiolytic effects upon intracerebral injection in rodents. In an approach that combines basic research with incipient clinically relevant application, novel mechanisms and brain targets of NPS-mediated anxiolytic effects were identified, and a noninvasive application procedure also applicable in patients, namely the intranasal administration, was established for the first time for NPS in mouse models.
    In a first step, the feasibility of intranasal NPS delivery was established in mice using fluorophore-coupled NPS to allow intracerebral tracking. This method permitted for the first time tracking of intranasally applied substances within the brain at a single-cell resolution. These results not only proved the applicability of intranasal NPS administration in the mouse, but also allowed identification and characterization of hitherto undescribed cerebral NPS target cells, which were shown to be most likely exclusively neurons. Moreover, specific uptake of fluorescently labeled NPS in the hippocampus provided the first direct evidence linking this brain region, a well-known major player in the regulation of fear expression, to the NPS circuitry. Further investigation into the functional role of the hippocampus in NPS-elicited anxiolytic effects revealed that local microinjections of NPS into the ventral CA1 (vCA1) region are sufficient to elicit anxiolysis in C57BL6/N mice on the elevated plus maze (EPM).
    In a second step, behavioral and molecular effects of intranasal NPS treatment were characterized in C57BL/6N mice. Intranasal application of NPS was shown here to produce anxiolytic effects similar to those described by others after intracerebral injection. This finding represents the basis for the implementation of a future NPS-based therapy via nasal sprays in patients suffering from anxiety disorders. Furthermore, the molecular effects of NPS treatment on cerebral protein expression were examined here for the first time. This research led to identification of novel downstream targets of NPS-mediated regulation in the hippocampus and the prefrontal cortex. These new targets include proteins involved in the glutamatergic system and in synaptic plasticity, both of which are known to be dysregulated in anxiety disorders.
    Finally, the effects of intranasal NPS treatment, hitherto described only in non-pathological animal models, were examined for the first time in mouse models of anxiety disorders, namely the high anxiety behavior (HAB) mice and a mouse model of PTSD. In HAB mice, NPS treatment elicited anxiolytic effects similar to those observed in C57BL/6N mice. In the mouse model of PTSD, NPS counteracted disease-related changes in expression levels of hippocampal synaptic proteins.
    To sum up, this work expands the current state-of-knowledge concerning the molecular and mechanistic background of NPS-mediated anxiolysis by characterizing the role of the hippocampus in the NPS circuitry and by identifying novel downstream targets of NPS. The data on anxiolytic effects of intranasal NPS treatment especially in mouse models of anxiety disorders furthermore establishes the therapeutic potential of NPS as a novel anxiolytic treatment.

    Structure/function analyses of mammalian histone H2A and H3 variants

    Structure/function analyses of mammalian histone H2A and H3 variants

    TOR complex 2 regulates plasma membrane homeostasis

    TOR complex 2 regulates plasma membrane homeostasis

    Involvement of myosin v in organelle transport and its unconventional interaction with microtubules

    Involvement of myosin v in organelle transport and its unconventional interaction with microtubules

Top podcasts en Educación

Listening Time: English Practice
Sonoro | Conner Pe
LA MAGIA DEL CAOS con Aislinn Derbez
Aislinn Derbez
Martha Debayle
Martha Debayle
Relatos en inglés con Duolingo
Duolingo
All Ears English Podcast
Lindsay McMahon and Michelle Kaplan
Inglés desde cero
Daniel

Más de Ludwig-Maximilians-Universität München

ASC Workshops
The Arnold Sommerfeld Center for Theoretical Physics (ASC)
Center for Advanced Studies (CAS) Research Focus Reduction and Emergence (LMU)
Center for Advanced Studies (CAS)
Center for Advanced Studies (CAS) Research Focus Reduction and Emergence (LMU)
Center for Advanced Studies (CAS)
Forum Kunstgeschichte Italiens (LMU)
Prof. Dr. Ulrich Pfisterer, Dr. Matteo Burioni
Center for Advanced Studies (CAS) Research Focus Evidence Based Practice (LMU) - HD
Center for Advanced Studies LMU
Sommerfeld Lecture Series (ASC)
The Arnold Sommerfeld Center for Theoretical Physics (ASC)