1 tim. 18 min

Sommerfeld Theory Colloquium: Quantum Matter with Strong Correlations Sommerfeld Lecture Series (ASC)

    • Vetenskap

From copper-oxide superconductors to rare-earth compounds, materials with strong electronic correlations have focused enormous attention over the last two decades. Solid-state chemistry, new elaboration techniques and improved experimental probes are constantly providing us with examples of novel materials with surprising electronic properties, the latest example being the recent discovery of iron-based high-temperature superconductors.
In this colloquium, I will emphasize that the classic paradigm of solid-state physics, in which electrons form a gas of wave-like quasiparticles, must be seriously revised for strongly correlated materials. Instead, a description accounting for both atomic-like excitations in real-space and quasiparticle excitations in momentum space is requested. I will review how Dynamical Mean-Field Theory -an approach that has led to significant advances in our understanding of strongly correlated materials- fulfills this goal.
New frontiers are also opening up, which bring together condensed-matter physics and quantum optics. `Artificial materials' made of ultra-cold atoms trapped by laser beams can be engineered with a remarkable level of controllability, and allow for the study of strong- correlation physics in previously unexplored regimes.

From copper-oxide superconductors to rare-earth compounds, materials with strong electronic correlations have focused enormous attention over the last two decades. Solid-state chemistry, new elaboration techniques and improved experimental probes are constantly providing us with examples of novel materials with surprising electronic properties, the latest example being the recent discovery of iron-based high-temperature superconductors.
In this colloquium, I will emphasize that the classic paradigm of solid-state physics, in which electrons form a gas of wave-like quasiparticles, must be seriously revised for strongly correlated materials. Instead, a description accounting for both atomic-like excitations in real-space and quasiparticle excitations in momentum space is requested. I will review how Dynamical Mean-Field Theory -an approach that has led to significant advances in our understanding of strongly correlated materials- fulfills this goal.
New frontiers are also opening up, which bring together condensed-matter physics and quantum optics. `Artificial materials' made of ultra-cold atoms trapped by laser beams can be engineered with a remarkable level of controllability, and allow for the study of strong- correlation physics in previously unexplored regimes.

1 tim. 18 min

Mest populära poddar inom Vetenskap

I hjärnan på Louise Epstein
Sveriges Radio
Dumma Människor
Acast - Lina Thomsgård och Björn Hedensjö
A-kursen
Emma Frans och Clara Wallin
Vetenskapsradion Historia
Sveriges Radio
P3 Dystopia
Sveriges Radio
Bildningspodden
Anekdot

Mer av Ludwig-Maximilians-Universität München

MCMP – Philosophy of Science
MCMP Team
MCMP – Epistemology
MCMP Team
Women Thinkers in Antiquity and the Middle Ages - SD
Peter Adamson
Theoretical Physics Schools (ASC)
The Arnold Sommerfeld Center for Theoretical Physics (ASC)
MCMP – Mathematical Philosophy (Archive 2011/12)
MCMP Team
Podcast Jüdische Geschichte
Abteilung für Jüdische Geschichte und Kultur, LMU München