50 min

#204 Fale terahercowe – technologia wkracza w kolejny zakres spektrum | dr inż. Łukasz Sterczewski Radio Naukowe

    • Science

Każdy z nas kojarzy mikrofale, wiemy też, czym jest światło widzialne i podczerwień. Na pograniczu podczerwieni i mikrofal leży tzw. region terahercowy. Fale terahercowe to strefa tajemnicza, temat na tyle mało opracowany naukowo, że jeszcze do niedawna region nazywano przerwą ("gap") technologiczną. Moim gościem w tym odcinku jest dr inż. Łukasz Sterczewski, naukowiec z Politechniki Wrocławskiej, który zajmuje się właśnie falami terahercowymi. Na zbudowanie spektrometru terahercowego pracującego w temperaturze pokojowej (to ważne, bo pozwalałoby na używanie niemal na co dzień) dr inż. Sterczewski otrzymał prestiżowy ERC Starting Grant – grant Europejskiej Rady ds. Badań Naukowych na pionierskie działania z możliwością dokonania przełomu w nauce, czyli naprawdę gruby kaliber finansowania naukowego.

Możliwości zastosowań są przeróżne. Fale terahercowe dzięki swojej długości potrafią przenikać przez wiele materiałów: papier, plastik, tkaniny, nie radzą sobie natomiast z metalem i dość słabo z płynami. Ważna informacja jest taka, że są niejonizacyjne. Co to znaczy? – Nie powodują szkody dla ludzkiego organizmu, co wynika z faktu, że ich energia jest bardzo niewielka, to są milielektronowolty – wyjaśnia mój gość.

Po takim wyjaśnieniu pierwsze możliwe wykorzystanie nasuwa się samo: w pewnych przypadkach (ale nie wszystkich) można je stosować zamiast bardziej inwazyjnego rentgena. Najlepiej sprawdzą się w prześwietlaniu tkanek, które nie zawierają za dużo wody, a więc np. w prześwietleniach stomatologicznych. Inne zastosowanie to kontrola leków: przepuszczamy fale terahercowe przez zamknięte opakowanie medykamentu, sprawdzamy, czy emitowane przez lek widmo jest zgodne z widmem próbki wzorcowej. I już wiemy, czy lek w środku opakowania nie jest sfałszowany, przeterminowany, czy prawidłowy. Do tego jeszcze komunikacja, badania kosmiczne, analiza dzieł sztuki… Zastosowań jest mnóstwo. Niektóre lotniska stosują już skanery terahercowe: bez trudu pokażą, co ukrywamy w kieszeniach lub pod ubraniem (co jest przy okazji dużym wyzwaniem etycznym).

Dr inż. Sterczewski chciałby, żeby technologia mogła być wykorzystywana szeroko (ale nie do podglądania), w podręcznych urządzeniach i właśnie w temperaturze pokojowej. - Ideałem byłaby demokratyzacja teraherców - mówi.

Rozmawiamy też o tym, jakie kryteria trzeba spełnić, żeby dostać taki grant (ważne jest doświadczenie, ale też stojąca za badaniami historia, znaczenie dla społeczeństwa), jak się pracuje w USA (mój gość pracował m.in. dla NASA), do czego przydaje się w amerykańskim laboratorium polskie myślenie, z jakimi trudnościami borykają się naukowcy i dlaczego zdobywcy Nobla sprzed lat nie spełnialiby współczesnych kryteriów badań naukowych. Dużo naukowego „falafelka”, bardzo polecam!

Każdy z nas kojarzy mikrofale, wiemy też, czym jest światło widzialne i podczerwień. Na pograniczu podczerwieni i mikrofal leży tzw. region terahercowy. Fale terahercowe to strefa tajemnicza, temat na tyle mało opracowany naukowo, że jeszcze do niedawna region nazywano przerwą ("gap") technologiczną. Moim gościem w tym odcinku jest dr inż. Łukasz Sterczewski, naukowiec z Politechniki Wrocławskiej, który zajmuje się właśnie falami terahercowymi. Na zbudowanie spektrometru terahercowego pracującego w temperaturze pokojowej (to ważne, bo pozwalałoby na używanie niemal na co dzień) dr inż. Sterczewski otrzymał prestiżowy ERC Starting Grant – grant Europejskiej Rady ds. Badań Naukowych na pionierskie działania z możliwością dokonania przełomu w nauce, czyli naprawdę gruby kaliber finansowania naukowego.

Możliwości zastosowań są przeróżne. Fale terahercowe dzięki swojej długości potrafią przenikać przez wiele materiałów: papier, plastik, tkaniny, nie radzą sobie natomiast z metalem i dość słabo z płynami. Ważna informacja jest taka, że są niejonizacyjne. Co to znaczy? – Nie powodują szkody dla ludzkiego organizmu, co wynika z faktu, że ich energia jest bardzo niewielka, to są milielektronowolty – wyjaśnia mój gość.

Po takim wyjaśnieniu pierwsze możliwe wykorzystanie nasuwa się samo: w pewnych przypadkach (ale nie wszystkich) można je stosować zamiast bardziej inwazyjnego rentgena. Najlepiej sprawdzą się w prześwietlaniu tkanek, które nie zawierają za dużo wody, a więc np. w prześwietleniach stomatologicznych. Inne zastosowanie to kontrola leków: przepuszczamy fale terahercowe przez zamknięte opakowanie medykamentu, sprawdzamy, czy emitowane przez lek widmo jest zgodne z widmem próbki wzorcowej. I już wiemy, czy lek w środku opakowania nie jest sfałszowany, przeterminowany, czy prawidłowy. Do tego jeszcze komunikacja, badania kosmiczne, analiza dzieł sztuki… Zastosowań jest mnóstwo. Niektóre lotniska stosują już skanery terahercowe: bez trudu pokażą, co ukrywamy w kieszeniach lub pod ubraniem (co jest przy okazji dużym wyzwaniem etycznym).

Dr inż. Sterczewski chciałby, żeby technologia mogła być wykorzystywana szeroko (ale nie do podglądania), w podręcznych urządzeniach i właśnie w temperaturze pokojowej. - Ideałem byłaby demokratyzacja teraherców - mówi.

Rozmawiamy też o tym, jakie kryteria trzeba spełnić, żeby dostać taki grant (ważne jest doświadczenie, ale też stojąca za badaniami historia, znaczenie dla społeczeństwa), jak się pracuje w USA (mój gość pracował m.in. dla NASA), do czego przydaje się w amerykańskim laboratorium polskie myślenie, z jakimi trudnościami borykają się naukowcy i dlaczego zdobywcy Nobla sprzed lat nie spełnialiby współczesnych kryteriów badań naukowych. Dużo naukowego „falafelka”, bardzo polecam!

50 min

Top Podcasts In Science

Frekvenca X
RTVSLO – Val 202
Podobe znanja
RTVSLO – Ars
Das Wissen | SWR
SWR
Mad in America: Science News
Mad in America
Ologies with Alie Ward
Alie Ward
Radiolab
WNYC Studios