243 episodes

How will AI, blockchain and other new technologies impact life science?

cclifescience.substack.com

cc: Life Science Podcast Chris Conner

    • Science

How will AI, blockchain and other new technologies impact life science?

cclifescience.substack.com

    Ethylene and the Fresh Produce Supply Chain

    Ethylene and the Fresh Produce Supply Chain

    When I’m eating blueberries from Chile here in California, I assume that they arrived by air after being picked a couple of days ago. That isn’t necessarily true. Delivery by sea could take weeks from the time they are picked by the grower until they arrive on the shelf at my local grocery store.
    In this episode, I talked to Tristan Kaye, Director of Global Marketing and Business Development at It's Fresh about the challenges of shipping fresh produce across the planet while avoiding waste and spoilage.
    According to the UN Food and Agricultural Organization, up to 45 percent of all fresh produce grown is never consumed. For two reasons. One is food loss. So this is through poor infrastructure, lack of appropriate cold chain, mishandling these sorts of things, or food waste.
    Another significant challenge in the supply chain is controlling the levels of ethylene, which is a signaling molecule produced in plants for many things, including maturation and ripening. And it doesn’t take much to have an impact on fruit during shipping.
    …kiwi fruit can be sensitive down to four or five parts per billion. So to give that a sort of sense of context, a billion seconds is about 33 years. So it's lik if you're looking for ethylene in kiwifruit, that is the equivalent of trying to find five seconds of a 33-yearr period… But it fundamentally affects all of the elements in terms of the fruit and many vegetables that are developed.
    It’s Fresh offers an interesting solution to this challenge. We didn’t go deep into the chemistry of their ethylene control technology. It allows growers to pick fruit a little early and allow it to ripen slowly so that, ideally, it shows up on our local shelves ready to be consumed. Our conversation focused on all the other aspects of the supply chain that illustrate the challenge of getting fruit to market in a condition that consumers expect regardless of where they were grown:
    Growers get paid based on what arrives at the destination. They must decide when to harvest their fruit at some interval before ripening, yet they have no control over much of what happens or how long it takes before fruit arrives.
    Market pricing and seasonal demand influence the decision of whether to ship by air or sea.
    There can be tremendous uncertainties around the time spent in a warehouse at either end. Even shipping routes are facing uncertainty as there is a restriction on what can go through the Panama Canal due to a drought that has Lake Gatun at record low levels. Ships may have to wait in an anchorage at the canal, deliver some containers elsewhere or go around the tip of South America. Conflict near the Suez Canal, or the inability to access the Port of Baltimore might also be a factor right now.
    Damaged fruit produces ethylene as a stress response. To top it all off, there is ethylene in the exhaust of internal combustion engines. Warehouses that store fruit may use electric machinery like forklifts, but imagine the challenge of keeping motor exhaust out of your entire supply chain.
    The next time you grab a handful of blueberries grown out of season in the other hemisphere, give a thought to all the considerations and decisions that help preserve them from the moment of harvest to the moment you enjoy them.
    Your deepest insights are your best branding. I’d love to help you share them. Chat with me about custom content for your life science brand. Or visit my website.
    If you appreciate this content, you likely know someone else who will appreciate it also. Please share it with them.


    This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit cclifescience.substack.com

    • 24 min
    Building a Good Life Outside of Academia

    Building a Good Life Outside of Academia

    If you have a PhD in life science, are working toward one, or just considering it with an eye toward getting an academic job, the math is not in your favor. There are way more PhDs than the number of academic slots available. How that gets resolved with respect to your career was the core of my discussion with Ali Divan, Founder of Trulitica, where he is helping life science PhDs get into biotech.
    Don’t miss the SPECIAL OFFER at the bottom of this post.
    For many, there is a mismatch between expectations of what a career in life science might look like and where you end up working. But it’s not all bad. There are good jobs to be had. Just maybe not the ones you expected.
    Ali’s job is helping folks reframe their skills (and conversations) to open up new opportunities.
    A math problem
    Our discussion covered the challenge from several angles. PIs need to generate publications. Historically, that has been done in the process of training scientists who then go on to train more scientists in their own quest for publications.
    This has led to an oversupply of scientists looking for academic jobs. Entering graduate school now betting on an uncertain outcome eight years down the road (generously) is risky. But should you give up your dreams of doing science? No. The system is definitely ripe for change. At the same time, it’s important to be open to new possibilities. That’s good advice for anyone looking eight years ahead.
    We don't really walk in and go, “Yeah, I'm, I'm going to do some career planning. I'm going to figure out what I'm going to do.” Most of us, we go, “Hey, I'm pretty good at school. I should keep doing it.”
    Universities need to change
    Check out Ali’s article at the end of this post for details. Ali says some of them are aware:
    What I've seen when I started speaking to the deans of graduate schools at universities, they're very well aware of this. And a lot of them, what they say is, “You know, I think we just need to be a little bit more responsible at the time that graduate students are applying and beginning.
    We need to tell them what they're signing up for and what the landscape is” so that they don't show up thinking, as I thought, that if you just show up and be excellent and try hard enough, that's enough because (for) everything up to that point in your life, that was enough.
    The other challenge for PhD graduates is that university career centers are set up for undergrads. For a new PhD, your PI and whatever network you have created through conferences, your committee etc. is your career center. The problem is that the only job they can likely help you get is one that looks exactly like theirs. Because of the bottleneck or for other reasons, some people will decide to leave academia. But their training (they’re 30+ years old now) has not prepared them.
    The rest is up to you
    How do you build a good life as a scientist? Isn’t that the real goal? Do good science, make discoveries, solve problems and enjoy all the other things life has to offer?
    What should you do if you had planned on a career as academic scientist and now need to look elsewhere? And how do you make that transition? How do you frame the skills you have in a way that’s relevant for employers?
    Here’s the good news: Ali says most of what you need is around strategy and communication, not hard skills. You’re only a few months away from being ready.
    The way that I help them is we first start out by sort of dismantling some of the practices that are that are so common and valued in academia. And so, as an example, in academia, it's highly valued to debate.
    It's highly valued to ask anytime you feel like you have a question or an argument. You just, you put it out. What I generally say is, well, in the industrial setting, when you don't have time, you have to have a very good reason for meetings. It's much more valuable to listen…
    That’s just one example of the difference you might find in industry.
    Focus on sk

    • 43 min
    The 3 Rs and the Role of Small Animals in Research

    The 3 Rs and the Role of Small Animals in Research

    Reduce. Refine. Replace. These are the three Rs of animal research. The intent is to reduce the number of animals used, refine methods to be efficient and humane and replace animals with other models where possible.
    This cc: Life Science episode is sponsored content, courtesy of MediLumine.
    I talked to Stephen Marchant, Founder and CEO of MediLumine about the importance of animal research, how imaging in small animals is different from humans and innovations that support the 3Rs of laboratory animal sciences.    
    While the FDA no longer requires the testing of all new drugs in animal models prior to clinical trials, for some drugs, the requirement may stand. Animal research has been essential for many advances in human health and will surely remain relevant in the quest to discover new treatments in the future.
    As compassionate beings, we want to help our fellow humans whenever possible. When a child has cancer or a mother with a diagnosis of early onset Alzheimer’s tells her children that at some point she may not recognize them (or they her), no options will be left unexplored to look for and find solutions and those options likely include some research using animal models to better understand disease.
    The animal technicians and scientists working in laboratory animal sciences have a passion for developing therapies and treatments for human disease but also for taking care of animals. For those interested to know more, Stephen recommends the GetReal Podcast by Dr Cindy Buckmaster to truly appreciate the reality of this and what it is like to work with laboratory animals in the life sciences.
    In vivo imaging is used to better understand disease progression or response to treatment, and it is one aspect of research that isn’t likely to be replaced soon. The development of novel contrast agents allows scientists to visualize structures such as tumors or vasculature much deeper in the organism thus precluding the use of visual inspections and use of a caliper to measure tumor size. This breakthrough is built in to MediLumine’s tag line ‘Vision without Sacrifice’.      
    Imaging structures in a mouse, whether by MRI or PET scan is very different from imaging in humans. The structures are (obviously) much smaller. What I hadn’t realized previously is how the small size requires longer measurements to get the desired resolution. Typical contrast agents like CT contrast agents used in the clinic are rapidly cleared making it more difficult for small animal micro-CT systems to generate high resolution images with these contrast agents. Stephen explained how the development of contrast agents like Fenestra HDVC, allows improved imaging of mouse organs with in vivo micro-computed tomography (CT).
    Depending on the goal of an experiment, modalities like MRI or CT can provide good resolution which allows researchers to calculate, for example, the volume of an object such as a tumor. Other modalities, such as optical imaging, are preferred when sensitivity is important. Bioluminescent reporters can sensitively be detected in vivo with the trade-off being resolution.
    …with optical imaging, it's a very sensitive modality. So you might be able to see something at lower concentrations, for example, with bioluminescent imaging. If you look at some of the tumor studies, in some of the publications, we see even a few days after the injection of tumor cells, we're able to see signals, but we're not necessarily able to localize them very well. So, for example, if you have, let's say, a signal in the right lobe of the liver, you would see something coming with optical imaging, but you wouldn't necessarily be able to localize it and say precisely exactly where it is.
    Without these in vivo imaging methods, understanding the biology of tumor progression would require a larger cohort of animals, with a requirement to euthanize some fraction at various time points to locate tumors and measure their size. That’s the reduction

    • 26 min
    Vertical Farming Meets Design of Experiments

    Vertical Farming Meets Design of Experiments

    AgBio, sustainability and DoE all come together in this episode. Tim Cuthbertson is the Chief Science Officer at VelociGro where they are using Design of Experiments to optimize plant growth media for vertical farming.
    I was curious to learn about the concept of vertical farming and how it can make an impact relative to the massive acreage involved in traditional agriculture. There are scenarios where it makes a lot of sense. First of all, greenhouse-grown produce is nothing new. Tomatoes are the most commonly grown crop in what is known as protected agriculture. And overall, in 2019, 55% of vegetable growers had some component of indoor operation, extension of the growing season being the primary reason. A greenhouse can produce 2.5 pounds of food per square foot per year. That’s horizontal growth.
    Growing plants vertically should increase that productivity further. So where is the impact? Consider what it takes to send blueberries from Chile to Alaska. Now what if blueberries could be grown indoors locally year-round? With LED lighting (which apparently doesn’t have to work on a 100% duty cycle) there could be significant savings in carbon emissions. Not to mention loss from spoilage etc in transit.
    In case you haven’t heard, the Panama Canal is backed up and the largest container ships can’t go through with a full load currently because there is not enough water in Lake Gatun due to decreased rainfall. That means produce either being offloaded elsewhere and sent by train or truck or a longer trip around Cape Horn and associated delays. Don’t miss my upcoming episode on “the ethylene problem”. We’ll talk about what it takes to keep fruit “fresh” on those long journeys.
    Sorry to interrupt. Not subscribed yet? Let’s fix that.
    Either way, I appreciate you spending time here.
    Local access to fresh produce in urban areas is another opportunity to deploy vertical farming. It occurs to me that a lot of empty office space is ripe (yeah, I said it) for conversion to urban indoor agriculture. I’m beginning to imagine a back-to-the-office campaign where a company leases some of its space for growing produce to be sold while allowing people who come back to the office to have access to a share of the crop to take home each week.
    Where does Design of Experiments come in? We covered DoE in a previous episode. Briefly, it’s a method of testing multiple variables simultaneously to quickly iterate and find the optimal solution to a problem or process. A typical one-factor-at-a-time (OFAT) approach makes all the results dependent on the optimal value of the first variable you test. That doesn’t in any way guarantee the best final outcome.
    How is VelociGro using DoE? We didn’t go into details about their products. Whether plants are grown on a substrate or in a soil-free environment, they need nutrients to grow. DoE allows their company of six people to iterate and optimize formulas for new products in as little as six weeks. Even if agriculture is not your field, you can see how DoE can save huge amounts of time in product or method development.
    It strikes me that once again, regardless of what area of the life sciences you work in, thinking about how things are done is as important for delivering a successful product as the science that goes into the product itself.
    Your deepest insights are your best branding. I’d love to help you share them. Chat with me about custom content for your life science brand. Or visit my website.




    This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit cclifescience.substack.com

    • 23 min
    Opportunities and Challenges: A Primer for Founders

    Opportunities and Challenges: A Primer for Founders

    Thomas Farb-Horch is the CEO of Thrive Bioscience. He has founded 18 companies. Seven of those turned out to be unicorns (sold at a valuation of >1 billion dollars).
    I was curious to know how he had identified so many opportunities correctly. BTW, Tom is not a scientist and has no advanced degrees in case you were thinking that was a requirement.
    He credits his success to being observant and inquisitive. That means keeping your eyes open for problems and asking why things are the way they are. The most attractive problem is one where people have been working the same way for a very long time. And if a process can be digitized, even better. As ever more computing power and storage capacity becomes available, more processes are in reach.
    Yet good ideas and smart solutions aren’t enough. Tom told me that every one of those unicorns came close to failure multiple times.
    How did he manage to dodge the bullet so often? One area where data and computing power won’t solve anything is our interactions with other people. To be successful as an entrepreneur, in addition to solving whatever technical challenges you have identified, you are still left to deal with customers, investors and board members. This is where Tom’s experience struck me.
    If you think reproducibility is a challenge in science, no amount of data or computing power can make humans more predictable.
    Getting people to change something that has been done the same way for decades is difficult. First for them to recognize the value and then to adopt new behaviors. Even early and late adopters won’t respond the same way. Your solution needs to appeal to both.
    At another level, while all your investors have a common goal of getting a return on their money, how and when they expect that to happen may be different. As you are likely to pivot at some point, it’s worth considering how you will keep them aligned on the new approach.
    The makeup of your board is critical and Tom has some essential advice on how you should negotiate their selection with investors. Listen to the episode for details. When it comes to what you are looking for, I’ll share one example here. Board members are sometimes (often?) selected for their name recognition as opposed to their domain expertise. Alexander Haig (former NATO Commander and Secretary of State) might have fit that description. Nevertheless, he brought value to the table in other ways. Tom told me that his skill at observing people and making sure everyone was heard to get to a result was off the charts. Given the roles I just mentioned, maybe that’s not so surprising. These skills are applicable everywhere.
    Board of directors is one of my favorite topics. It's so incredibly important. Many entrepreneurs don't spend enough time focusing on compatibility across the board. And kind of the profile of what they want.
    Every founder is likely to encounter a dark night of the soul moment. Tom said, “Fear is a terrible advisor.” It’s at those times when having chosen the right investors and board members will pay off. Who will stand by you and brainstorm solutions to see you through?
    Science is complicated and often difficult. Human behavior is even more so. It strikes me that in science, even if we don’t yet know the answer, we know it’s there and that certainty is comforting. I wonder if we shouldn’t spend more time thinking about how the people around us are going to affect our success and who we choose to do that.
    As an example of how humans can make an impact in our interactions, more than once over several conversations, Tom asked me, “How can I make this podcast successful for you?” I replied, “That mindset alone is all I need.”


    This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit cclifescience.substack.com

    • 57 min
    Walk and Talk with Susanna Harris

    Walk and Talk with Susanna Harris

    Susanna Harris is the Director of Community at Breakout Ventures. She is also the Founder of PhD Balance, a collaborative community empowering graduate students to build their personal and professional resilience and the 2023 recipient of the SAMPS Young Person of the Year Award.
    This episode is a little different. For the last couple of years, I have interviewed the winner of that SAMPS award on this podcast. Susanna has been a guest before and although we’ve chatted a few times since and both live in the Bay Area, we had never met face to face. Susanna mentioned hiking in one of our calls so I thought this would be an opportunity try something new. I suggested we meet up for a hike and record some stuff along the way. Thank you Susanna for being game for one more experiment.
    We had a free-flowing conversation covering our inspirations in science, science communication, marketing, career paths, longevity, mental health, and more. AI, psychedelics and The Andromeda Strain all came up as well. Give it a listen to find out the context.
    I typically focus these episodes around a theme and try to point toward a specific takeaway. While there is a thread to the topics we discussed, the takeaway for me this time was simply about the value of conversation. I trust that the listeners to this podcast will learn something about each of us and may be prompted to think about something they heard from a new perspective.
    As a listener, you don’t have to be part of a conversation to benefit from it. That’s the magic of this medium. You can listen in as if you were there. Taking that beyond podcasts, consider the value of people listening to your team members, executives and subject matter experts in their natural, unscripted style. Podcast listeners report (and I can verify this both as a host and a listener) that they feel like they know the people they hear from regularly. There is a level of know, like, and trust that is hard to replicate except face-to-face.
    Finally, one never knows where having a conversation will lead in the long run. I don’t even remember how Susanna and I connected initially. Yet here we were, 3 years later, hiking the hills, sharing our experiences in science and creating unique content along the way. If we get a chance to help one another out in the future, that would be icing on the cake. It all started with a conversation.
    Mentioned in this episode:
    Books: Where Good Ideas Come From by Steven Johnson
    The End of the World is Just The Beginning by Peter Zeihan
    Movie: The Andromeda Strain (also a book by Michael Crichton)
    Your deepest insights are your best branding. I’d love to help you share them. Chat with me about custom content for your life science brand. Or visit my website.




    This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit cclifescience.substack.com

    • 37 min

Top Podcasts In Science

Hidden Brain
Hidden Brain, Shankar Vedantam
Radiolab
WNYC Studios
Something You Should Know
Mike Carruthers | OmniCast Media | Cumulus Podcast Network
Crash Course Pods: The Universe
Crash Course Pods, Complexly
Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas
Sean Carroll | Wondery
Ologies with Alie Ward
Alie Ward

You Might Also Like