Entwicklung und Anwendung von Hochleistungs-Software für Mantelkonvektionssimulationen Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

    • Bildung

The Earth mantle convects on a global scale, coupling the stress field at every point to every other location at an instant. This way, any change in the buoyancy field has an immediate impact on the convection patterns worldwide. At the same time, mantle convection couples to processes at scales of a few kilometers or even a few hundred meters. Dynamic topography and the geoid are examples of such small-scale expressions of mantle convection. Also, the depth of phase transitions varies locally, with strong influences on the buoyancy, and thus the global stress field. In order to understand these processes dynamically it is essential to resolve the whole mantle at very high numerical resolutions.
At the same time, geodynamicists are trying to answer new questions with their models, for example about the rheology of the mantle, which is most likely highly nonlinear. Also, due to the extremely long timescales we cannot observe past mantle states, which calls for simulations backwards in time. All these issues lead to an extreme demand in computing power. To cater to those needs, the physical models of the mantle have to be matched with efficient solvers and fast algorithms, such that we can efficiently exploit the enormous computing power of current and future high performance systems.
Here, we first give an extensive overview over the physical models and introduce some numerical concepts to solve the equations. We present a new two-dimensional software as a testbed and elaborate on the implications of realistic mineralogic models for efficient mantle convection simulations. We find that phase transitions present a major challenge and suggest some procedures to incorporate them into mantle convection modeling. Then we give an introduction to the high-performance mantle convection prototype HHG, a multigrid-based software framework that scales to some of the fastest computers currently available. We adapt this framework to a spherical geometry and present first application examples to answer geodynamic questions. In particular, we show that a very thin and very weak asthenosphere is dynamically plausible and consistent with direct and indirect geological observations.

The Earth mantle convects on a global scale, coupling the stress field at every point to every other location at an instant. This way, any change in the buoyancy field has an immediate impact on the convection patterns worldwide. At the same time, mantle convection couples to processes at scales of a few kilometers or even a few hundred meters. Dynamic topography and the geoid are examples of such small-scale expressions of mantle convection. Also, the depth of phase transitions varies locally, with strong influences on the buoyancy, and thus the global stress field. In order to understand these processes dynamically it is essential to resolve the whole mantle at very high numerical resolutions.
At the same time, geodynamicists are trying to answer new questions with their models, for example about the rheology of the mantle, which is most likely highly nonlinear. Also, due to the extremely long timescales we cannot observe past mantle states, which calls for simulations backwards in time. All these issues lead to an extreme demand in computing power. To cater to those needs, the physical models of the mantle have to be matched with efficient solvers and fast algorithms, such that we can efficiently exploit the enormous computing power of current and future high performance systems.
Here, we first give an extensive overview over the physical models and introduce some numerical concepts to solve the equations. We present a new two-dimensional software as a testbed and elaborate on the implications of realistic mineralogic models for efficient mantle convection simulations. We find that phase transitions present a major challenge and suggest some procedures to incorporate them into mantle convection modeling. Then we give an introduction to the high-performance mantle convection prototype HHG, a multigrid-based software framework that scales to some of the fastest computers currently available. We adapt this framework to a spherical geometry and present first application examples to answer geodynamic questions. In particular, we show that a very thin and very weak asthenosphere is dynamically plausible and consistent with direct and indirect geological observations.

Top‑Podcasts in Bildung

Die Köpfe der Genies mit Maxim Mankevich
Maxim Mankevich
Erklär mir die Welt
Andreas Sator
Eine Stunde History - Deutschlandfunk Nova
Deutschlandfunk Nova
KRÜMELTALK Chaos trifft Herz
Antonia Zimmermann
carpe diem – Der Podcast für ein gutes Leben
carpe diem
G Spot mit Stefanie Giesinger
Stefanie Giesinger & Studio Bummens

Mehr von Ludwig-Maximilians-Universität München

LMU Europarecht Vertiefung
Caspar Behme
Persönlichkeitspsychologie - SoSe 2008
Dr. Tobias Haupt
LMU Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Vorlesungen und Vorträge
Professoren der Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft
Psychologie und Pädagogik - Open Access LMU - Teil 01/02
Ludwig-Maximilians-Universität München
Marketing (Podcastreihe)
Prof. Dr. Anton Meyer
Theoriegeschichte der Kommunikationswissenschaft
Prof. Dr. Michael Meyen