Molecular biology of octocoral mitochondria Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

    • Bildung

The mitochondria of non-bilaterian metazoans display a staggering diversity of genome organizations and also a slow rate of mtDNA evolution, unlike bilaterians, which may hold a key to understand the early evolution of the animal mitochondrion. Octocorals are unique members of Phylum Cnidaria, harboring several atypical mitochondrial genomic features, including a paucity of tRNA genes, various genome arrangements and the presence of novel putative mismatch repair gene (mtMutS) with various potential biological roles. Thus octocorals represents an interesting model for the study of mitochondrial biology and evolution. However, besides its utility in molecular phylogenetics, the mtDNA of octocorals is not studied from the perspective of DNA repair, oxidative stress response or gene expression; and there is a general lack of knowledge on the DNA repair capabilities and role of the mtMutS gene, response to climate-change, and mtDNA transcription in absence of interspersed tRNA genes of octocoral mitochondrial genome. In order to put the observed novelties in the octocoral mitochondria in an evolutionary and an environmental context, and to understand their potential functions and the consequences of their presence in conferring fitness during climate change induced stress, this study was undertaken. This dissertation aims to explore the uniqueness and diversity of octocoral mtDNA from an environmental as well as an evolutionary perspective.
The thesis comprises five chapters exploring various facets of octocoral biology. The introductory section provides basic information and elaborates on the importance of studying non-bilaterian mitochondria. The first chapter sets the base for subsequent gene expression studies. Octocorals are extensively studied from a taxonomic and phylogenetic point of view. However, gene expression studies on these organisms have only recently started to appear. To successfully employ the most commonly used gene expression profiling technique i.e., the quantitation real-time PCR (qPCR), it is necessary to have an experimentally validated, treatment-specific set of stably expressed reference genes that will support for the accurate quantification of changes in expression of genes of interest. Hence, seven housekeeping genes, known to exhibit constitutive expression, were investigated for expression stability during simulated climate-changed (i.e. thermal and low-pH) induced stress. These genes were validated and subsequently used in gene expression studies on Sinularia cf. cruciata, our model octocoral.
The occurrence of a mismatch repair gene, and the slow rates of mtDNA evolution in octocoral mitogenome calls for further investigations on the potential robustness of octocoral mitochondria to the increased oxidative stress. The second chapter presents a mitochondrion-centric view of climate-change stress response by investigating mtDNA damage, repair, and copy number dynamics during stress. The changes in gene expression of a set of stress-related nuclear, and mitochondrial genes in octocorals were also monitored. A robust response of octocoral mitochondria to oxidative mtDNA damage was observed, exhibiting a rapid recovery of the damaged mtDNA. The stress-specific regulation of the mtMutS gene was detected, indicating its potential involvement in stress response. The results highlight the resilience potential of octocoral mitochondria, and its adaptive benefits in changing oceans.
The tRNA genes in animal mitochondria play a pivotal role in mt-mRNA processing and maturation. The influence of paucity of tRNA genes on transcription of the mitogenome in octocorals has not been investigated. The third chapter steps in the direction to understand the mitogenome transcription by investigating the nature of mature mRNAs. Several novel features not present in a “typical” animal mt-mRNAs were detected. The majority of the mitochondrial transcripts were observed as polycistronic units (i.e. the mRNA carryi

The mitochondria of non-bilaterian metazoans display a staggering diversity of genome organizations and also a slow rate of mtDNA evolution, unlike bilaterians, which may hold a key to understand the early evolution of the animal mitochondrion. Octocorals are unique members of Phylum Cnidaria, harboring several atypical mitochondrial genomic features, including a paucity of tRNA genes, various genome arrangements and the presence of novel putative mismatch repair gene (mtMutS) with various potential biological roles. Thus octocorals represents an interesting model for the study of mitochondrial biology and evolution. However, besides its utility in molecular phylogenetics, the mtDNA of octocorals is not studied from the perspective of DNA repair, oxidative stress response or gene expression; and there is a general lack of knowledge on the DNA repair capabilities and role of the mtMutS gene, response to climate-change, and mtDNA transcription in absence of interspersed tRNA genes of octocoral mitochondrial genome. In order to put the observed novelties in the octocoral mitochondria in an evolutionary and an environmental context, and to understand their potential functions and the consequences of their presence in conferring fitness during climate change induced stress, this study was undertaken. This dissertation aims to explore the uniqueness and diversity of octocoral mtDNA from an environmental as well as an evolutionary perspective.
The thesis comprises five chapters exploring various facets of octocoral biology. The introductory section provides basic information and elaborates on the importance of studying non-bilaterian mitochondria. The first chapter sets the base for subsequent gene expression studies. Octocorals are extensively studied from a taxonomic and phylogenetic point of view. However, gene expression studies on these organisms have only recently started to appear. To successfully employ the most commonly used gene expression profiling technique i.e., the quantitation real-time PCR (qPCR), it is necessary to have an experimentally validated, treatment-specific set of stably expressed reference genes that will support for the accurate quantification of changes in expression of genes of interest. Hence, seven housekeeping genes, known to exhibit constitutive expression, were investigated for expression stability during simulated climate-changed (i.e. thermal and low-pH) induced stress. These genes were validated and subsequently used in gene expression studies on Sinularia cf. cruciata, our model octocoral.
The occurrence of a mismatch repair gene, and the slow rates of mtDNA evolution in octocoral mitogenome calls for further investigations on the potential robustness of octocoral mitochondria to the increased oxidative stress. The second chapter presents a mitochondrion-centric view of climate-change stress response by investigating mtDNA damage, repair, and copy number dynamics during stress. The changes in gene expression of a set of stress-related nuclear, and mitochondrial genes in octocorals were also monitored. A robust response of octocoral mitochondria to oxidative mtDNA damage was observed, exhibiting a rapid recovery of the damaged mtDNA. The stress-specific regulation of the mtMutS gene was detected, indicating its potential involvement in stress response. The results highlight the resilience potential of octocoral mitochondria, and its adaptive benefits in changing oceans.
The tRNA genes in animal mitochondria play a pivotal role in mt-mRNA processing and maturation. The influence of paucity of tRNA genes on transcription of the mitogenome in octocorals has not been investigated. The third chapter steps in the direction to understand the mitogenome transcription by investigating the nature of mature mRNAs. Several novel features not present in a “typical” animal mt-mRNAs were detected. The majority of the mitochondrial transcripts were observed as polycistronic units (i.e. the mRNA carryi

Top‑Podcasts in Bildung

Die Köpfe der Genies mit Maxim Mankevich
Maxim Mankevich
Erklär mir die Welt
Andreas Sator
Eine Stunde History - Deutschlandfunk Nova
Deutschlandfunk Nova
KRÜMELTALK Chaos trifft Herz
Antonia Zimmermann
carpe diem – Der Podcast für ein gutes Leben
carpe diem
G Spot mit Stefanie Giesinger
Stefanie Giesinger & Studio Bummens

Mehr von Ludwig-Maximilians-Universität München

LMU Europarecht Vertiefung
Caspar Behme
Persönlichkeitspsychologie - SoSe 2008
Dr. Tobias Haupt
LMU Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Vorlesungen und Vorträge
Professoren der Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft
Psychologie und Pädagogik - Open Access LMU - Teil 01/02
Ludwig-Maximilians-Universität München
Marketing (Podcastreihe)
Prof. Dr. Anton Meyer
Theoriegeschichte der Kommunikationswissenschaft
Prof. Dr. Michael Meyen