Critical Care Scenarios

Brandon Oto, PA-C, FCCM and Bryan Boling, DNP, ACNP, FCCM
Critical Care Scenarios

Join us as we talk through clinical cases in the ICU setting, illustrating important points of diagnosis, treatment, and management of the critically ill patient, all in a casual, "talk through" verbal scenario format.

  1. 13 DE NOV.

    Episode 81: Bacterial meningitis with Casey Albin

    We talk about diagnosis, treatment, and subsequent care of the patient with bacterial meningitis, with Emory neurointensivist Casey Albin, MD (@caseyalbin). Learn more at the Intensive Care Academy! Find us on Patreon here! Buy your merch here! Takeaway lessons * Many septic patients have altered mental status, but suspicion should be raised for CNS infection when there is also: headache, photophobia, vomiting, or any possibility of seizure activity. * Meningitis and encephalitis are separate entities usually involving different organisms, different imaging findings, and with different prognostic implications and downstream complications. However, at the early diagnostic stage, they can be largely lumped together. * Empiric antimicrobials must consider CNS penetration. Piperacillin/tazobactam (ie Zosyn) has very little. Ceftriaxone is better. Cefepime is fine, although the prospect of cefepime neurotoxicity may make neurologists leery; ceftazidime is fine too. Add vancomycin (not necessarily for MRSA but for resistant Strep pneumo), acyclovir (for HSV), and a liberal approach to adding ampicillin for Listenia for anybody older, immunocompromised, or in the midst of an outbreak. * Dexamethasone has been shown to reduce hearing loss after Strep pneumo meningitis. If suspicion for meningitis is strong early, it’s reasonable to give early (before or concurrent with antibiotics). It’s probably not worth giving >24 hours later. * The main benefit of lumbar puncture is to allow stopping or narrowing antimicrobials without treating with the entire empiric cocktail for a full two weeks. (There is also the chance of identifying a resistance organism.) * Ideally, LP is done before antimicrobials. However, if non-culture-based diagnostics are available such as PCR panels, successful diagnosis can often occur even after antibiotic administration. It’s worth doing the LP even if late and no PCR is available, as the signature of protein, glucose, etc will often still be useful. (At least, up front in a patient who might have CNS infection, avoid creating new obstacles like loading them with anticoagulation, antiplatelets, low molecular weight heparin, etc.) * Most patients will already have a CT head performed before LP is considered, making the question of whether this is necessary (to assess risk of downward herniation) fairly moot. However, if not, it should probably be done prior to LP in anyone with an altered level of consciousness. * Order from all CSF: Gram stain and culture, cell counts (first and last tubes), glucose, protein, and HSV PCR. (VZV generally does not cause clinical meningitis per se, usually causing a meningitis vasculitis, e.g. in someone with small-vessel strokes.) If available, order PCR arrays too, although some centers may not run it unless the CSF WBC count is elevated (e.g. >5). In a patient with any immunocompromise, test for cryptococcus as well. Other immunosuppressed testing is case-specific. * Always measure opening pressure. This is not accurate in a patient sitting up. While technically possible to puncture a patient sitting up, then rotate them with assistance to lay flat, it’s not easy or elegant. In a sick patient, just do the LP laying down. * Remember that opening pressure is measured at the bedside in centimeters of water, but should be converted to millimeters of mercury to be...

    59min
  2. 18 DE SET.

    Episode 79: Transfusion reactions with Joe Chaffin

    We discuss transfusion reactions, risks, and management, including infection, consent, TRALI, TACO, and hemolytic reactions—with Dr. Joe Chaffin (@bloodbankguy), the “Blood Bank Guy” and transfusion medicine specialist. Learn more at the Intensive Care Academy! Find us on Patreon here! Buy your merch here! Takeaway lessons * The risk of transfusion-related infection (HIV, hepatitis B, and hepatitis C) is around 1 in 3 million. * Acute hemolytic transfusion reactions (usually due to clerical errors or unit mix-ups) occur about 1 in every 75 or 76 thousand transfusions. Mortality is only one per million or so, however. * Simple febrile transfusion reactions occur about 1/100-300 transfusions. * Transfusion is always slightly immunosuppressing, perhaps increasing risk of post-op infection, cancer recurrence, etc. This effect is real, but small and not easily quantified. * Urticarial reactions (hives) seem trivial to clinicians, but can be very frightening to patients, even causing them to refuse future transfusions. * 80% of hemolytic reactions initially present with only fever, perhaps some chills. There is no way to differentiate from non-hemolytic febrile reaction at this stage. While the odds favor a non-hemolytic reaction, if you presume this and continue your transfusions, you are relying on luck, and you will eventually be wrong, which would be an indefensible medical error. * Once a hemolytic reaction is obvious, you waited too long. The main determinant of mortality after hemolytic transfusion reaction is the volume of blood transfused. * Typical workup for a febrile, possible hemolytic reaction is to confirm the labels and clerical match, then return the blood to the blood bank, where they will check patient blood for hemolysis, direct Coomb’s, and usually repeating the ABO/Rh testing. This can cause a delay in transfusion and maybe loss of the unit of blood; by typical regulations, once blood is removed from the blood bank or portable cooler, it must be transfused within 4 hours or wasted. * The hallmark of ABO mismatch is severe intravascular hemolysis. Most other hemolytic reactions yield extravascular hemolysis, e.g. in the spleen. Cytokine storm will be be seen. Compared to the myoglobin released in rhabdomyolysis, the free hemoglobin released in intravascular hemolysis is not quite as nephrotoxic (the resulting AKI may be more related to shock than from direct toxicity). * Hemolysis is only destructive to the transfused blood, so anemia per se generally does not develop. One exception can occur in sickle cell patients, where transfusion can induce a “hyperhemolysis” phenomenon where native red cells are also hemolyzed. * Mortality from acute hemolytic reactions is fairly low in previously healthy patients. Patients already critically ill may not do as well. * TRALI is mostly diagnosed by consensus criteria. “Definitive” TRALI (there is no longer a less definite category) is defined as: * No evidence of lung injury prior to transfusion * Onset within 6 hours after end of transfusion * P/F ratio 300 or SaO2 92% on room air * Radiographic evidence of bilateral infiltrates with n...

    56min
  3. 21 DE AGO.

    Episode 78: Echoing the RV with Matt Siuba

    We talk the nitty-gritty of assessing the right heart using echocardiography, with our friend Matt Siuba (@msiuba), intensivist at the Cleveland Clinic and master of zentensivism. Learn more at the Intensive Care Academy! Find us on Patreon here! Buy your merch here! Takeaway lessons * RV echo starts with evaluating three things: size, squeeze, and septal kinetics. * Size should be 2/3 the LV * Squeeze can be assessed in a variety of ways * The septum should not be bowing into the LV. * Dilation is an early and somewhat compensatory finding, and can be used as a screening test (the “D-dimer of RV dysfunction”). Septal changes are probably later and more of a sign of dysfunction (i.e. not compensatory). * Evaluating the RV’s ejection fraction is impractical due to its complex shape (without 3D echo or cardiac MRI or other advanced tools). So methods like TAPSE that reduce it to its longitudinal function become a more practical surrogate. * TAPSE is not an isolated marker of RV contractility, but a marker of the overall RV-PA unit. However, this is probably a feature, not a failure. You don’t really want to know how the RV is contracting in the abstract, but how it’s contracting in its current loading conditions. So TAPSE will vary by afterload and preload, but not artifactually—i.e. if the loading conditions change and TAPSE improves, then contractility is better in the current conditions. * s’ is similar to TAPSE, and similarly limited (mainly evaluating longitudinal function). It assesses velocity, not movement, which theoretically may represent something different (maybe a better marker of function?), although that difference is not very well studied; some studies do suggest that s’ may be more sensitive to changes after adding an inotrope, but who knows if that means anything. The most common cause for a big discrepancy between TAPSE and s’ is probably technical error, not a clinical distinction. * RVSP can be useful as a marker of afterload, but says nothing about the cause of RVSP—high left sided pressures vs high PVR—and also incorporates the RV function, so separating all this out can be difficult. * TAPSE/PASP (or TAPSE/RVSP) ratio might be a somewhat more accurate marker of RV/PA coupling, but not really clear if it’s clinically better than using the TAPSE alone, which is already a fair marker of RV/PA coupling. By measuring more things, it also introduces more room for technical error (usually underestimating RVSP), such as the need to estimate the TV gradient and the CVP. More tricuspid regurgitation will also tend to reduce the ratio, without necessarily indicating better RV function. * CVP estimates derived from the IVC are very unreliable in the critically ill. Many chronic PH patients have chronically distended IVCs regardless of their RAP. Using a transduced CVP is probably better. You can also just trend the TV gradient as a marker of its own and ignore the CVP component. * Shortening of the PA acceleration time (PAAT or PVAT) is a useful marker of pulmonary afterload. Notching of the waveform usually indicates a very high afterload, much more likely to be caused by pulmonary factors than high left heart pressures.

    55min

Sobre

Join us as we talk through clinical cases in the ICU setting, illustrating important points of diagnosis, treatment, and management of the critically ill patient, all in a casual, "talk through" verbal scenario format.

Para ouvir episódios explícitos, inicie sessão.

Fique por dentro deste podcast

Inicie sessão ou crie uma conta para seguir podcasts, salvar episódios e receber as atualizações mais recentes.

Selecionar um país ou região

África, Oriente Médio e Índia

Ásia‑Pacífico

Europa

América Latina e Caribe

Estados Unidos e Canadá