106 episódios

The Universe is out there, waiting for you to discover it.
There’s a cosmic story uniting us.
We’re determined to bring it to everyone.

Starts With A Bang podcast Ethan Siegel

    • Ciência
    • 5,0 • 1 avaliação

The Universe is out there, waiting for you to discover it.
There’s a cosmic story uniting us.
We’re determined to bring it to everyone.

    Starts With A Bang #106 - The Troublesome Hunt for Planet Nine

    Starts With A Bang #106 - The Troublesome Hunt for Planet Nine

    One of the most swiftly forgotten revolutions in all of science is our understanding of the Solar System out beyond Neptune. Although Pluto was discovered nearly a full century ago, it wasn't until the early 1990s that we even discovered the next object beyond Neptune that wasn't also part of the Plutonian system. And yet, in the 30 short years that have passed since then, we've learned so much more about the structure of the Kuiper belt and beyond, but we also face tremendous challenges in the quest to learn more thanks to an unwelcome intruder: the rise of satellite megaconstellations.

    Although the original team of Mike Brown and Konstantin Batygin continue to advocate for a novel, massive, undiscovered world located at hundreds of times the Earth-Sun distance, they're largely alone, as other scientists have weighed in and see no evidence for this hypothetical world. Nevertheless, more science must be conducted to know for sure, and in the meantime, the rise of satellite megaconstellations such as Starlink now poses an existential threat to all sorts of endeavors, including planetary astronomy.

    Here to guide us through the current status of the hunt for Planet Nine, as well as the new obstacles that astronomers are contending with, I'm so pleased to welcome Prof. Sam Lawler to the show. Sam is a professor at the University of Regina in Saskatchewan, Canada, and is also known for her advocacy work in favor of dark and quiet skies for all of humanity to enjoy and benefit from. It's a fascinating discussion that took me to some unexpected places, and I think you'll enjoy it a whole lot!

    (This image shows an illustration of the hypothetical Planet Nine: a planet theorized to be more massive than Earth but hundreds of times farther away from the Sun than our own world. Credit: Tobias Roetsch/Future Publishing)

    • 1h 33 min
    Starts With A Bang #105 - Dark Matter And Galaxies

    Starts With A Bang #105 - Dark Matter And Galaxies

    Every January, I head to the American Astronomical Society's big annual meeting with an ulterior motive in mind. Beyond merely uncovering new scientific findings, gathering information for potential stories, and connecting with friends and colleagues, I also look to meet emerging junior researchers who are swiftly becoming not only experts, but leaders, in their particular sub-field of astronomy.

    One of the most popular research topics in astrophysics today is the connection between the dark Universe, including the only indirectly-observed dark matter and dark energy, and the observable components that astronomers routinely see: stars, galaxies, gas, plasma, and other forms of light-emitting and light-absorbing matter. The dark Universe, to date, is best revealed by looking at the luminous, electromagnetic signals that are imprinted onto the visible components of our cosmos.

    To better understand what scientists are investigating, I'm so pleased to welcome KeShawn Ivory to the podcast. KeShawn is a PhD candidate at Vanderbilt University and researches the connection between dark matter, the non-luminous, gravitationally interacting "stuff" that holds the Universe together (as best as it can), and the luminous, observable galaxies that populate the visible Universe in numbers that rise into the trillions. It's a fascinating topic and a great addition to your May listening, right here on Starts With A Bang!

    (The SIBELIUS project, which simulates galaxies and structures beyond the local Universe, is part of the Virgo Consortium that attempts to use cosmological simulations to reproduce features of galaxies, groups, and clusters that are seen all across the Universe. By using a mix of theory, observations, and simulations, astrophysicists can better understand the nature of dark matter in our cosmos. Credit: Virgo Consortium/SIBELIUS project)

    • 1h 38 min
    Starts With A Bang #104 - The Magnetized Galactic Center

    Starts With A Bang #104 - The Magnetized Galactic Center

    Have you ever wondered what the full story with the galactic center is? Sure, we have stars, gas, and an all-important supermassive black hole, but for hundreds of light-years around the center, there's a remarkable story going on that's traced out in a variety of elements at a whole slew of different temperatures. Imprinted in that material is a remarkable set of features that reveals the magnetic fields generated in our galaxy's core, with some of them spanning much greater distances than have ever been seen elsewhere.

    It's a testament to the power of multiwavelength astronomy, and in particular to the long wavelengths like the far-infrared, the microwave, and the radio portions of the spectrum that shows us these features of the Universe that simply can't be revealed in any other way. To help bring this story to all of you, I'm so pleased to welcome Dr. Natalie Butterfield, a scientist at the National Radio Astronomy Observatory (NRAO), to join us on this episode of the Starts With A Bang podcast.

    Natalie is the discoverer of a giant magnetized ring some 30 light-years in diameter located in the galactic center, and is one of the leaders of the FIREPLACE survey: the Far-Infrared Polarimetric Large-Area CMZ Exploration survey that used the (sadly, now-defunct) SOFIA telescope to image the galactic center as never before. Strap in and have a listen, because you just might never think about the core of the Milky Way in the same way again!

    (This image shows the magnetized galactic center, with various features highlighted, as imaged by the SOFIA/HAWC+ FIREPLACE survey team. The giant bubble at the left of the image is some 30 light-years wide, several times larger than any other supernova-blown bubble ever discovered. Credit: D. Paré et al., arXiv:2401.05317v2, 2024)

    • 1h 42 min
    Starts With A Bang #103 - Active galaxies and the universe

    Starts With A Bang #103 - Active galaxies and the universe

    All throughout the Universe, galaxies exist in a great variety of shapes, ages, and states. Today's galaxies come in spirals, ellipticals, irregulars, and rings, all ranging in size from behemoths hundreds or even thousands of times larger than the Milky Way to dwarf galaxies with fewer than 0.1% of the stars present here in our cosmic home. But at the centers of practically all galaxies, particularly the large ones, lie supermassive black holes.

    When matter falls in towards these black holes, it doesn't just get swallowed, but accelerates and heats up, leading to phenomena like accretion disks, jets, and emitted radiation all across the electromagnetic spectrum. When these conditions exist, we know we have what's called an active galaxy, and it isn't just the rest of the galaxy that's impacted by that central activity, but far larger structures in the Universe beyond. 

    Here to help us explore these objects and their impact this month is Skylar Grayson, a PhD candidate at the School of Earth and Space Exploration at Arizona State University. Skylar works at the intersection of theory and computational astrophysics, and helps simulate the Universe while focusing on the inclusion and modeling of this type of galactic activity, and is one of the people helping uncover just how profound of a role these galaxies play in shaping the Universe around them. Buckle up for another exciting 90 minute episode; you won't want to miss it!

    The powerful radio galaxy Hercules A, shown above, is a stunning example of how central activity from the galaxy's active black hole influences not only the host galaxy, but a large region of space extending far outside the galaxy itself, as visible from the extent of the radio lobes highlighted visually. (Credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA))

    • 1h 30 min
    Starts With a Bang #102 - The missing exoplanets

    Starts With a Bang #102 - The missing exoplanets

    Up until the early 1990s, we didn't know what sorts of planets lived around stars other than our Sun. Were they like our own Solar System, with inner, rocky planets close to our star and large, giant worlds farther away? It turned out that exoplanetary systems come in a great variety of configurations: with planets of all sizes, masses, and distances from their parent stars. But some configurations are more common than others.

    There are lots of hot Earth-sized planets and lots of hot Jupiter-sized planets, but precious few "hot Neptune" worlds out there. Furthermore, there appear to be lots of Earth-sized and super-Earth-sized worlds at greater distances, as well as many Neptune-sized and mini-Neptune-sized worlds. However, there's a gap there, too: between the large super-Earths and the small mini-Neptunes. Where are these missing exoplanets? Or, rather, why are these classes of exoplanets so uncommon?

    That's what we're exploring on this episode of the Starts With a Bang podcast, featuring Ph.D. candidate Dakotah Tyler as our guest this month. By looking at how a hot (but low-mass) Jupiter-sized planet is being photoevaporated by its parent star, we can learn so much about not only the classes of objects we see out there, but even the ones we don't!

    (Around the star WASP-69, a "hot Jupiter" exoplanet has its outer layers of atmosphere photoevaporated away, creating a comet-like tail whose extent and mass were recently measured for the first time. Credit: W. M. Keck Observatory/Adam Makarenko)

    • 1h 46 min
    Starts With A Bang #101 - Quantum Computing

    Starts With A Bang #101 - Quantum Computing

    Happy new year, everyone, and with a new year comes a spectacular new podcast! We normally cover an intricate and underappreciated aspect of astrophysics on the podcast, but I had the opportunity to bring on a true expert in the field of quantum computing and just couldn't pass it up.

    You've likely heard a lot of noise about quantum computers and the benefits that they're poised to bring, with buzzwords like "P=NP," "quantum supremacy," and "quantum advantage" tossed around, but a lot of what you're likely to hear is hype, not actual science. Good thing I was able to get Dr. Riccardo Manenti as a guest for our podcast!

    Riccardo is the author of a state-of-the-art textbook on quantum computers, has his PhD from Oxford in Quantum Computing, and has been working for Quantum Computing startup Rigetti for several years now. Join us as he helps demystify some of the recent progress and problems right here on the cutting edge of this promising new arena of physics, right here on the Starts With A Bang podcast!

    (This illustration show's Rigetti's widely-available quantum computer, Novera, with 9 superconducting physical cubits within it. The great hope is that by scaling up to greater numbers of physical qubits, quantum advantage will be an achievable milestone in the relatively near future. Credit: Rigetti/Novera)

    • 1h 38 min

Opiniões de clientes

5,0 de 5
1 avaliação

1 avaliação

Top podcasts em Ciência

Ciência Suja
Ciência Suja
Ciência Sem Fim
Estúdios Flow
Naruhodo
B9, Naruhodo, Ken Fujioka, Altay de Souza
Os três elementos
Os três elementos / TocaCast
O Tempo Virou
Giovanna Nader
Ta de Clinicagem
tadeclinicagem

Você Também Pode Gostar de

Ask a Spaceman!
Paul M. Sutter
Quanta Science Podcast
Quanta Magazine
Why This Universe?
Dan Hooper, Shalma Wegsman
SpaceTime with Stuart Gary
Stuart Gary
Universe Today Podcast
Fraser Cain
Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas
Sean Carroll | Wondery