Опівночні Балачки

Денис, Ігор, Саша
Опівночні Балачки

Машинне навчання (Machine Learning aka ML), програмування і драми в айті. 🇺🇦україномовний, наскільки ми можемо🇺🇦 Про технології і штучний інтелект від айтівців.

  1. 07/11/2024

    №46: Ґеллоуін і страшний ШІ

    🔞 Тут будуть матюки 🔞 Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠ 0:00-1:24 Вступ 1:25-6:49 Класифікуємо жахастики про штучні інтелекти: незрозумілі ШІ. "Космічна Одісея" і HAL9000. "War Games". ШІ, що створює скріпки. "Космічні пригоди Іоанна Тихого" 6:50-8:07 Як бороли ці олдові штучні інтелекти? 8:08-10:43 Азімов і як ШІ придумав зорельоти, швидші за світло 10:44-13:30 Chat GPT створює нам реворд функції і промпти. Азімов і ще приклади незрозумілих ШІ 13:30-14:31 Тачікоми з Ghost in the Shell: SAC. 14:33-18:24 Термінатор 3, як приклад категорії "ШІ, у якого є тіло, і зараз як дасть нам". Blade Runner. Ex Machina і тести Т'юрінга 18:25-25:20 Масштабний ШІ, що всім керує. Skynet. Animatrix: The Second Renaissance. Transcendence (Довершенність) з Джонні Деппом. ШІ втручається у ваші думки 25:21-28:24 Hall of Fame ШІ: GladOS (Portal), Shogun (System Shock II), ШІ з "Місія Нездійснена. Розплата" 28:25-31:33 I have no mouth and I must scream 31:34-33:20 Мислинєвий експеримент "Василіск Роко" 33:21-35:35 Outro Долучайтесь до наших соцмереж: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Twitter ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@O_Balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ TikTok ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@o_balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

    36 min
  2. 08/10/2024

    №45: Golang madness

    🔞 Тут будуть матюки 🔞 Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠ 0:00-2:35 Intro 2:36-6:38 Перший досвід Go. Helm & text/template. wtfjs / таблиця рівності типів в JS . Темне голанг минуле одного з нас 6:39-10:10 Представлення формату дати і часу Time.String І при чому тут друге січня дві тисячі шостого року? 10:11-11:00 Чому в Golang є вбудовані типи комлпексних чисел? 11:01-14:55 Щодо іменування в Golang. Канонічна презентація. Стандартний пакет fmt. 14:56-19:10 Масиви і слайси. Небезпека модифікацій слайсів 19:11-23:10 Golang := Pascal. Ваші функції, що повертають result, err 23:11-24:00 Як промовляється 'go fmt'? 24:01-26:14 Передаємо аргументи за значенням чи посиланням? Області видимості і замикання 26:15-31:19 Go-ла мова після Python. std lib. Історія як записати один tar архів. Репозиторії – модулі – пакети. Пояснювальна бригада для жарту про бар – модуль debug 31:20-33:31 AWS SDK і створення Config'у 33:32-37:55 Інтерфейси. Маленькі інтерфейси і пакет іо. "Приймай інтерфейси на вхід, видавай на вихід імплементації" 37:56-40:11 Type conversion != Type assert'и. Go.mod/go.sum. Гугл знає про всі ваші голанг пакети 40:12-44:45 Складність від простоти Go. Ідіоматичний код. Таксисти, що пишуть на Go 44:46-47:15 Менше станів на рівні модулю. Колбеки для очищення ресурсів. Прості зміни = багато коду (інколи). 47:16-50:14 Чи варто писати на Go? Outro Долучайтесь до наших соцмереж: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Twitter ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@O_Balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ TikTok ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@o_balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

    50 min
  3. 01/10/2024

    №44: старий новий Python 3.12

    🔞 Тут будуть матюки 🔞 Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠ Найновіший випуск "Опівночних Балачок" доповідає про новинки старої версії Python! Настільки ми не квапимося з продакшеном. Пристібайтеся, маємо для вас трохи нових випусків в жовтні. 0:00-1:45 Intro 1:46-2:30 Python 3.12 2:34-11:00 PEP 701 F-string апдейти і покращення помилок. Інтерпретатор вгадує, чому у вас помилки. 11:01-16:09 PEP 669 Low Impact Monitoring for CPython. Визначаємо як говорити "yield з функції" 16:10-17:16 Коли будемо сратися про наступні версії пайтону? 17:17-19:20 PEP 695 солоденький цукорок для ваших дженериків 19:21-23:38 PEP 709 inlined comprehensions і обговорення скоупів 23:39-27:42 PEP 683 Immortal Objects 27:43-34:23 PEP 684 Subinterpreters 34:24-35:28 itertools.batched 35:29-38:11 distutils 🪦 38:12-39:08 Outro Долучайтесь до наших соцмереж: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Twitter ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@O_Balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ TikTok ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@o_balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

    39 min
  4. №43: Дизайн-інтерв'ю

    31/12/2023

    №43: Дизайн-інтерв'ю

    🔞 Тут будуть матюки 🔞 Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠ 0:00-1:16 Інтро 1:17-4:35 Як проходить дизайн-інтерв'ю? Мета-кроки, які повторюються. 4:36-7:09 Особливість інструментів для дизайн-інтерв'ю. Усякі https://excalidraw.com/, https://miro.com/ і подібне. А також варіант для багатих – беріть планшет 7:10-9:54 Основні аспекти дизайн інтерв'ю. Компоненти і їх взаємодія. Збереження даних. Нефункціональні вимоги, де довгий перелік *bility штук 9:55-12:31 Чи будуть на дизайн-інтерв'ю питати про внутрянку Postgres? 12:32-14:06 Можливі варіації дизайн задач. Питання щодо речей, про які ви не думаєте в стартапі на 3 юзера 14:07-21:49 Як готуватися до дизайн інтерв'ю? bytebytego, donnemartin/system-design-primer. Блоги github, discord. Блог AWS Solutions. https://www.educative.io 21:49-25:50 А тепер насправді, як готуватися. Dry-run інтерв'ю. І в цілому про важливість говорити слова ротом. ExponentTV на ютуб 25:51-28:23 Хот-тейки від Ігоря. 7 DBs in 7 Weeks. 28:24-33:09 За що можуть "віднімати бали" при проходженні. Чи варто казати, що юзатимеш технологію, з якою не знайомий? Показуйте ініціативність. І не сперечайтеся 33:10-36:57 Висновки. Що прикольне/не прикольне в дизайн-інтерв'ю. Outro Долучайтесь до наших соцмереж: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Twitter ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@O_Balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ TikTok ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@o_balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

    37 min
  5. 06/06/2023

    №42: Рекомендаційні системи, ч.2. Будуємо моделі, зворотній зв'язок, а як схочемо, то і ChatGPT підключимо

    В гостях ⁠Дмитро Войтех⁠, СТО @ S-PRO 🔞 Тут будуть матюки 🔞 Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠ 00:00 - 00:56 – Intro 00:57 - 02:50 – з чого почати побудову recommender system; як будувати baseline моделі 02:51 - 04:10 – говоримо про бейзлайн систему рекомендації для зображень 04:11 - 7:30 – говоримо про бейзлайн систему рекомендації для текстових даних; Bag of Words; BM-25 7:31 - 11:15 – які хороші методи для отримування вектора ознак для тексту? TF-IDF 11:16 - 14:47 – проблема холодного старту (Cold Start) 14:48 - 20:10 – моделі рекомендацій на основі механізму зворотнього зв’язку; кенселінг за дієвидло; колаборативна фільтрація – @benfred/implicit, улюблена Alternating Least Squares у каглерів 20:11 - 22:06 – знову говоримо про cold start; маленький кейс megogo 22:07 - 30:25 – Word2Vec, чи то пак Entity2Vec — як оригінальний NLP алгоритм можна використовував для побудови рекомендацій 30:26 - 33:20 – векторна арифметика на елементах вашої системи — як віднімати та додавати зображення та тексти один від/до одного; фантазуємо, які пошукові системи потрібні людям; слухайте подкаст з Олесем Петрівом, де космічні кораблі подорожують просторами ембедінгів 33:21 - 36:53 – рекомендації на базі графових нейронних мереж (GNN); чому це можна розглядати як логічне продовження моделей на базі Word2Vec; кейс AliBaba; 36:54 - 39:45 – чим графові нейронні мережі схожі на конволюційні; 3b1b про конволюції 39:46 - 45:50 – як використовувати Mixture of Experts моделі в рекомендаціях; пейпер Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer; згадуємо symbolic AI та експретні системи 45:51 - 51:56 – рекомендаційні системи на основні архітектури нейронних мереж Трансформер; паралелі з Deep & Wide model; слідкуйте за https://eugeneyan.com/ 51:57 - 1:01:46 – алгоритми Learning to Rank (навчання ранжуванню) — побороли recall, починаємо бороти precision; поточкові, попарні та помножинні підходи; RankNet; LambdaMart 1:01:47 - 1:06:19 – рекомендації на базі моделі CLIP - Contrastive Language–Image Pre-training; як тюнити CLIP 1:06:20 - 1:07:28 – знову фантазуємо про просунуті пошукові інтерфейси; reverse image search 1:07:29 - 1:11:40 – як використовувати LLM для рекомендацій? Забудьте про ембеддінги – несемо prompt engineering в маси! 1:11:41 - 1:17:18 – крейзі ідеї в світі LLM – ChatGPT розкаже вам, як спати та бігати, враховуючи дані з вашого Apple Watch; як LLM обробляє великі дані через маленьке контекстне вікно 1:17:19 - 1:22:13 – Підбиваємо підсумки; перераховуємо теми в галузі рекомендаційних систем, про які ми НЕ поговорили, але які варто подосліджувати. Коли повернеться подкаст? Долучайтесь до наших соцмереж: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Twitter ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@O_Balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ TikTok ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@o_balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

    1h 22m
  6. 26/05/2023

    №41: Рекомендаційні системи, ч.1. CTO про побудову рекомендаційних систем, їх складові і оцінку якості.

    В гостях Дмитро Войтех, СТО @ S-PRO 🔞 Тут будуть матюки 🔞 Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠ 0:00-0:30 Інтро 0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим 1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи 5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії 8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval) 11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми 12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси 17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів… 19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю 22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі! 30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій 40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення 46:51 - 47:45 – Click Through Rate (CTR) 47:46 - 49:55 — говоримо про customer satisfaction та функції втрат для тренування рекомендаційної системи 49:56 - 55:28 — проблема feedback loop, exploration vs exploitation, рандомізуємо рекомендації; багаторукі бандити 55:29 - 57:28 — робимо паузу; оутро і канал 'Kyiv Data Science’; чекайте продовження в наступному випуску! Долучайтесь до наших соцмереж: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠⁠⁠⁠⁠ Twitter ⁠⁠⁠⁠⁠⁠⁠⁠⁠@O_Balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠ TikTok ⁠⁠⁠⁠⁠⁠⁠⁠⁠@o_balachky⁠⁠⁠⁠⁠⁠⁠⁠⁠ Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

    57 min
  7. 18/05/2023

    №40: AI Act – законодавство про ШІ з ЄС на експорт

    🔞 Тут будуть матюки 🔞 Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠ 0:00-2:43 Інтро про закони і як в майбутньому кіберполіція буде накривати людей, що генерують меми з метою розповсюдження 2:44-6:44  Aritificial Intelligence Act у ЄС 11 травня перейшов на наступний етап законотворчого воркфлоу. Що далі? 6:45-12:45 Що забороняють законом? (Текстовий переказ від the verge). Кейси ШІ на біометричних даних для високоризикових ситуацій – забороняємо. 12:46-15:45 Реєстр високоризикованих систем з використанням ШІ. Приймаємо консент-попапи при вході в ЖК за парканом 15:46-21:08 Змусимо всіх авторів великих моделей оцінювати ризики (і розповідати про датасети). Чим це загрожує Google і OpenAI? Прогнозуємо черговий бум у сфері дата провайдерів 21:09-23:35 Якщо дані – дуже важливі, то буде розквіт… барж з даними? … скоріше, про федеративне навчання і data clean rooms 23:36-27:03 Тут про правове поле в космосі, нейтральні води, застосунки з темних заковулків і першу космічну війну 27:04-27:31 Outro Долучайтесь до наших соцмереж: ⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠⁠⁠⁠⁠⁠⁠ Twitter ⁠⁠⁠⁠⁠⁠⁠⁠@O_Balachky⁠⁠⁠⁠⁠⁠⁠⁠ TikTok ⁠⁠⁠⁠⁠⁠⁠⁠@o_balachky⁠⁠⁠⁠⁠⁠⁠⁠ Музика: ⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

    28 min

About

Машинне навчання (Machine Learning aka ML), програмування і драми в айті. 🇺🇦україномовний, наскільки ми можемо🇺🇦 Про технології і штучний інтелект від айтівців.

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada