An Agentic Mixture of Experts for DevOps with Sunil Mallya

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Today we're joined by Sunil Mallya, CTO and co-founder of Flip AI. We discuss Flip’s incident debugging system for DevOps, which was built using a custom mixture of experts (MoE) large language model (LLM) trained on a novel "CoMELT" observability dataset which combines traditional MELT data—metrics, events, logs, and traces—with code to efficiently identify root failure causes in complex software systems. We discuss the challenges of integrating time-series data with LLMs and their multi-decoder architecture designed for this purpose. Sunil describes their system's agent-based design, focusing on clear roles and boundaries to ensure reliability. We examine their "chaos gym," a reinforcement learning environment used for testing and improving the system's robustness. Finally, we discuss the practical considerations of deploying such a system at scale in diverse environments and much more.

The complete show notes for this episode can be found at https://twimlai.com/go/708.

Juontajat ja vieraat

Jos haluat kuunnella tiettyjä jaksoja, kirjaudu sisään.

Pysy ajan tasalla tästä ohjelmasta

Kirjaudu sisään tai rekisteröidy, jos haluat seurata ohjelmia, tallentaa jaksoja ja saada uusimmat päivitykset.

Valitse maa tai alue

Afrikka, Lähi‑itä ja Intia

Aasian ja Tyynenmeren alue

Eurooppa

Latinalainen Amerikka ja Karibia

Yhdysvallat ja Kanada