A Practical Introduction To Graph Data Applications

Data Engineering Podcast

Summary

Finding connections between data and the entities that they represent is a complex problem. Graph data models and the applications built on top of them are perfect for representing relationships and finding emergent structures in your information. In this episode Denise Gosnell and Matthias Broecheler discuss their recent book, the Practitioner’s Guide To Graph Data, including the fundamental principles that you need to know about graph structures, the current state of graph support in database engines, tooling, and query languages, as well as useful tips on potential pitfalls when putting them into production. This was an informative and enlightening conversation with two experts on graph data applications that will help you start on the right track in your own projects.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise.
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt.
  • You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today!
  • Your host is Tobias Macey and today I’m interviewing Denise Gosnell and Matthias Broecheler about the recently published practitioner’s guide to graph data

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by explaining what your goals are for the Practitioner’s Guide To Graph Data?
    • What was your motivation for

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada