Estimation with Numerical Integration on Sparse Grids

Volkswirtschaft - Open Access LMU - Teil 01/03

For the estimation of many econometric models, integrals without analytical solutions have to be evaluated. Examples include limited dependent variables and nonlinear panel data models. In the case of one-dimensional integrals, Gaussian quadrature is known to work efficiently for a large class of problems. In higher dimensions, similar approaches discussed in the literature are either very specific and hard to implement or suffer from exponentially rising computational costs in the number of dimensions - a problem known as the "curse of dimensionality" of numerical integration. We propose a strategy that shares the advantages of Gaussian quadrature methods, is very general and easily implemented, and does not suffer from the curse of dimensionality. Monte Carlo experiments for the random parameters logit model indicate the superior performance of the proposed method over simulation techniques.

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada