Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)
Machine Learning Street Talk (MLST)

Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).

  1. Want to Understand Neural Networks? Think Elastic Origami! - Prof. Randall Balestriero

    2 DAYS AGO

    Want to Understand Neural Networks? Think Elastic Origami! - Prof. Randall Balestriero

    Professor Randall Balestriero joins us to discuss neural network geometry, spline theory, and emerging phenomena in deep learning, based on research presented at ICML. Topics include the delayed emergence of adversarial robustness in neural networks ("grokking"), geometric interpretations of neural networks via spline theory, and challenges in reconstruction learning. We also cover geometric analysis of Large Language Models (LLMs) for toxicity detection and the relationship between intrinsic dimensionality and model control in RLHF. SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? Goto https://tufalabs.ai/ *** Randall Balestriero https://x.com/randall_balestr https://randallbalestriero.github.io/ Show notes and transcript: https://www.dropbox.com/scl/fi/3lufge4upq5gy0ug75j4a/RANDALLSHOW.pdf?rlkey=nbemgpa0jhawt1e86rx7372e4&dl=0 TOC: - Introduction - 00:00:00: Introduction - Neural Network Geometry and Spline Theory - 00:01:41: Neural Network Geometry and Spline Theory - 00:07:41: Deep Networks Always Grok - 00:11:39: Grokking and Adversarial Robustness - 00:16:09: Double Descent and Catastrophic Forgetting - Reconstruction Learning - 00:18:49: Reconstruction Learning - 00:24:15: Frequency Bias in Neural Networks - Geometric Analysis of Neural Networks - 00:29:02: Geometric Analysis of Neural Networks - 00:34:41: Adversarial Examples and Region Concentration - LLM Safety and Geometric Analysis - 00:40:05: LLM Safety and Geometric Analysis - 00:46:11: Toxicity Detection in LLMs - 00:52:24: Intrinsic Dimensionality and Model Control - 00:58:07: RLHF and High-Dimensional Spaces - Conclusion - 01:02:13: Neural Tangent Kernel - 01:08:07: Conclusion REFS: [00:01:35] Humayun – Deep network geometry & input space partitioning https://arxiv.org/html/2408.04809v1 [00:03:55] Balestriero & Paris – Linking deep networks to adaptive spline operators https://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf [00:13:55] Song et al. – Gradient-based white-box adversarial attacks https://arxiv.org/abs/2012.14965 [00:16:05] Humayun, Balestriero & Baraniuk – Grokking phenomenon & emergent robustness https://arxiv.org/abs/2402.15555 [00:18:25] Humayun – Training dynamics & double descent via linear region evolution https://arxiv.org/abs/2310.12977 [00:20:15] Balestriero – Power diagram partitions in DNN decision boundaries https://arxiv.org/abs/1905.08443 [00:23:00] Frankle & Carbin – Lottery Ticket Hypothesis for network pruning https://arxiv.org/abs/1803.03635 [00:24:00] Belkin et al. – Double descent phenomenon in modern ML https://arxiv.org/abs/1812.11118 [00:25:55] Balestriero et al. – Batch normalization’s regularization effects https://arxiv.org/pdf/2209.14778 [00:29:35] EU – EU AI Act 2024 with compute restrictions https://www.lw.com/admin/upload/SiteAttachments/EU-AI-Act-Navigating-a-Brave-New-World.pdf [00:39:30] Humayun, Balestriero & Baraniuk – SplineCam: Visualizing deep network geometry https://openaccess.thecvf.com/content/CVPR2023/papers/Humayun_SplineCam_Exact_Visualization_and_Characterization_of_Deep_Network_Geometry_and_CVPR_2023_paper.pdf [00:40:40] Carlini – Trade-offs between adversarial robustness and accuracy https://arxiv.org/pdf/2407.20099 [00:44:55] Balestriero & LeCun – Limitations of reconstruction-based learning methods https://openreview.net/forum?id=ez7w0Ss4g9 (truncated, see shownotes PDF)

    1h 18m
  2. Nicholas Carlini (Google DeepMind)

    25 JAN

    Nicholas Carlini (Google DeepMind)

    Nicholas Carlini from Google DeepMind offers his view of AI security, emergent LLM capabilities, and his groundbreaking model-stealing research. He reveals how LLMs can unexpectedly excel at tasks like chess and discusses the security pitfalls of LLM-generated code. SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? Goto https://tufalabs.ai/ *** Transcript: https://www.dropbox.com/scl/fi/lat7sfyd4k3g5k9crjpbf/CARLINI.pdf?rlkey=b7kcqbvau17uw6rksbr8ccd8v&dl=0 TOC: 1. ML Security Fundamentals [00:00:00] 1.1 ML Model Reasoning and Security Fundamentals [00:03:04] 1.2 ML Security Vulnerabilities and System Design [00:08:22] 1.3 LLM Chess Capabilities and Emergent Behavior [00:13:20] 1.4 Model Training, RLHF, and Calibration Effects 2. Model Evaluation and Research Methods [00:19:40] 2.1 Model Reasoning and Evaluation Metrics [00:24:37] 2.2 Security Research Philosophy and Methodology [00:27:50] 2.3 Security Disclosure Norms and Community Differences 3. LLM Applications and Best Practices [00:44:29] 3.1 Practical LLM Applications and Productivity Gains [00:49:51] 3.2 Effective LLM Usage and Prompting Strategies [00:53:03] 3.3 Security Vulnerabilities in LLM-Generated Code 4. Advanced LLM Research and Architecture [00:59:13] 4.1 LLM Code Generation Performance and O(1) Labs Experience [01:03:31] 4.2 Adaptation Patterns and Benchmarking Challenges [01:10:10] 4.3 Model Stealing Research and Production LLM Architecture Extraction REFS: [00:01:15] Nicholas Carlini’s personal website & research profile (Google DeepMind, ML security) - https://nicholas.carlini.com/ [00:01:50] CentML AI compute platform for language model workloads - https://centml.ai/ [00:04:30] Seminal paper on neural network robustness against adversarial examples (Carlini & Wagner, 2016) - https://arxiv.org/abs/1608.04644 [00:05:20] Computer Fraud and Abuse Act (CFAA) – primary U.S. federal law on computer hacking liability - https://www.justice.gov/jm/jm-9-48000-computer-fraud [00:08:30] Blog post: Emergent chess capabilities in GPT-3.5-turbo-instruct (Nicholas Carlini, Sept 2023) - https://nicholas.carlini.com/writing/2023/chess-llm.html [00:16:10] Paper: “Self-Play Preference Optimization for Language Model Alignment” (Yue Wu et al., 2024) - https://arxiv.org/abs/2405.00675 [00:18:00] GPT-4 Technical Report: development, capabilities, and calibration analysis - https://arxiv.org/abs/2303.08774 [00:22:40] Historical shift from descriptive to algebraic chess notation (FIDE) - https://en.wikipedia.org/wiki/Descriptive_notation [00:23:55] Analysis of distribution shift in ML (Hendrycks et al.) - https://arxiv.org/abs/2006.16241 [00:27:40] Nicholas Carlini’s essay “Why I Attack” (June 2024) – motivations for security research - https://nicholas.carlini.com/writing/2024/why-i-attack.html [00:34:05] Google Project Zero’s 90-day vulnerability disclosure policy - https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-policy.html [00:51:15] Evolution of Google search syntax & user behavior (Daniel M. Russell) - https://www.amazon.com/Joy-Search-Google-Master-Information/dp/0262042878 [01:04:05] Rust’s ownership & borrowing system for memory safety - https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html [01:10:05] Paper: “Stealing Part of a Production Language Model” (Carlini et al., March 2024) – extraction attacks on ChatGPT, PaLM-2 - https://arxiv.org/abs/2403.06634 [01:10:55] First model stealing paper (Tramèr et al., 2016) – attacking ML APIs via prediction - https://arxiv.org/abs/1609.02943

    1h 21m
  3. Subbarao Kambhampati - Do o1 models search?

    23 JAN

    Subbarao Kambhampati - Do o1 models search?

    Join Prof. Subbarao Kambhampati and host Tim Scarfe for a deep dive into OpenAI's O1 model and the future of AI reasoning systems. * How O1 likely uses reinforcement learning similar to AlphaGo, with hidden reasoning tokens that users pay for but never see * The evolution from traditional Large Language Models to more sophisticated reasoning systems * The concept of "fractal intelligence" in AI - where models work brilliantly sometimes but fail unpredictably * Why O1's improved performance comes with substantial computational costs * The ongoing debate between single-model approaches (OpenAI) vs hybrid systems (Google) * The critical distinction between AI as an intelligence amplifier vs autonomous decision-maker SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? Goto https://tufalabs.ai/ *** TOC: 1. **O1 Architecture and Reasoning Foundations** [00:00:00] 1.1 Fractal Intelligence and Reasoning Model Limitations [00:04:28] 1.2 LLM Evolution: From Simple Prompting to Advanced Reasoning [00:14:28] 1.3 O1's Architecture and AlphaGo-like Reasoning Approach [00:23:18] 1.4 Empirical Evaluation of O1's Planning Capabilities 2. **Monte Carlo Methods and Model Deep-Dive** [00:29:30] 2.1 Monte Carlo Methods and MARCO-O1 Implementation [00:31:30] 2.2 Reasoning vs. Retrieval in LLM Systems [00:40:40] 2.3 Fractal Intelligence Capabilities and Limitations [00:45:59] 2.4 Mechanistic Interpretability of Model Behavior [00:51:41] 2.5 O1 Response Patterns and Performance Analysis 3. **System Design and Real-World Applications** [00:59:30] 3.1 Evolution from LLMs to Language Reasoning Models [01:06:48] 3.2 Cost-Efficiency Analysis: LLMs vs O1 [01:11:28] 3.3 Autonomous vs Human-in-the-Loop Systems [01:16:01] 3.4 Program Generation and Fine-Tuning Approaches [01:26:08] 3.5 Hybrid Architecture Implementation Strategies Transcript: https://www.dropbox.com/scl/fi/d0ef4ovnfxi0lknirkvft/Subbarao.pdf?rlkey=l3rp29gs4hkut7he8u04mm1df&dl=0 REFS: [00:02:00] Monty Python (1975) Witch trial scene: flawed logical reasoning. https://www.youtube.com/watch?v=zrzMhU_4m-g [00:04:00] Cade Metz (2024) Microsoft–OpenAI partnership evolution and control dynamics. https://www.nytimes.com/2024/10/17/technology/microsoft-openai-partnership-deal.html [00:07:25] Kojima et al. (2022) Zero-shot chain-of-thought prompting ('Let's think step by step'). https://arxiv.org/pdf/2205.11916 [00:12:50] DeepMind Research Team (2023) Multi-bot game solving with external and internal planning. https://deepmind.google/research/publications/139455/ [00:15:10] Silver et al. (2016) AlphaGo's Monte Carlo Tree Search and Q-learning. https://www.nature.com/articles/nature16961 [00:16:30] Kambhampati, S. et al. (2023) Evaluates O1's planning in "Strawberry Fields" benchmarks. https://arxiv.org/pdf/2410.02162 [00:29:30] Alibaba AIDC-AI Team (2023) MARCO-O1: Chain-of-Thought + MCTS for improved reasoning. https://arxiv.org/html/2411.14405 [00:31:30] Kambhampati, S. (2024) Explores LLM "reasoning vs retrieval" debate. https://arxiv.org/html/2403.04121v2 [00:37:35] Wei, J. et al. (2022) Chain-of-thought prompting (introduces last-letter concatenation). https://arxiv.org/pdf/2201.11903 [00:42:35] Barbero, F. et al. (2024) Transformer attention and "information over-squashing." https://arxiv.org/html/2406.04267v2 [00:46:05] Ruis, L. et al. (2023) Influence functions to understand procedural knowledge in LLMs. https://arxiv.org/html/2411.12580v1 (truncated - continued in shownotes/transcript doc)

    1h 32m
  4. How Do AI Models Actually Think? - Laura Ruis

    20 JAN

    How Do AI Models Actually Think? - Laura Ruis

    Laura Ruis, a PhD student at University College London and researcher at Cohere, explains her groundbreaking research into how large language models (LLMs) perform reasoning tasks, the fundamental mechanisms underlying LLM reasoning capabilities, and whether these models primarily rely on retrieval or develop procedural knowledge. SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? Goto https://tufalabs.ai/ *** TOC 1. LLM Foundations and Learning 1.1 Scale and Learning in Language Models [00:00:00] 1.2 Procedural Knowledge vs Fact Retrieval [00:03:40] 1.3 Influence Functions and Model Analysis [00:07:40] 1.4 Role of Code in LLM Reasoning [00:11:10] 1.5 Semantic Understanding and Physical Grounding [00:19:30] 2. Reasoning Architectures and Measurement 2.1 Measuring Understanding and Reasoning in Language Models [00:23:10] 2.2 Formal vs Approximate Reasoning and Model Creativity [00:26:40] 2.3 Symbolic vs Subsymbolic Computation Debate [00:34:10] 2.4 Neural Network Architectures and Tensor Product Representations [00:40:50] 3. AI Agency and Risk Assessment 3.1 Agency and Goal-Directed Behavior in Language Models [00:45:10] 3.2 Defining and Measuring Agency in AI Systems [00:49:50] 3.3 Core Knowledge Systems and Agency Detection [00:54:40] 3.4 Language Models as Agent Models and Simulator Theory [01:03:20] 3.5 AI Safety and Societal Control Mechanisms [01:07:10] 3.6 Evolution of AI Capabilities and Emergent Risks [01:14:20] REFS: [00:01:10] Procedural Knowledge in Pretraining & LLM Reasoning Ruis et al., 2024 https://arxiv.org/abs/2411.12580 [00:03:50] EK-FAC Influence Functions in Large LMs Grosse et al., 2023 https://arxiv.org/abs/2308.03296 [00:13:05] Surfaces and Essences: Analogy as the Core of Cognition Hofstadter & Sander https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475 [00:13:45] Wittgenstein on Language Games https://plato.stanford.edu/entries/wittgenstein/ [00:14:30] Montague Semantics for Natural Language https://plato.stanford.edu/entries/montague-semantics/ [00:19:35] The Chinese Room Argument David Cole https://plato.stanford.edu/entries/chinese-room/ [00:19:55] ARC: Abstraction and Reasoning Corpus François Chollet https://arxiv.org/abs/1911.01547 [00:24:20] Systematic Generalization in Neural Nets Lake & Baroni, 2023 https://www.nature.com/articles/s41586-023-06668-3 [00:27:40] Open-Endedness & Creativity in AI Tim Rocktäschel https://arxiv.org/html/2406.04268v1 [00:30:50] Fodor & Pylyshyn on Connectionism https://www.sciencedirect.com/science/article/abs/pii/0010027788900315 [00:31:30] Tensor Product Representations Smolensky, 1990 https://www.sciencedirect.com/science/article/abs/pii/000437029090007M [00:35:50] DreamCoder: Wake-Sleep Program Synthesis Kevin Ellis et al. https://courses.cs.washington.edu/courses/cse599j1/22sp/papers/dreamcoder.pdf [00:36:30] Compositional Generalization Benchmarks Ruis, Lake et al., 2022 https://arxiv.org/pdf/2202.10745 [00:40:30] RNNs & Tensor Products McCoy et al., 2018 https://arxiv.org/abs/1812.08718 [00:46:10] Formal Causal Definition of Agency Kenton et al. https://arxiv.org/pdf/2208.08345v2 [00:48:40] Agency in Language Models Sumers et al. https://arxiv.org/abs/2309.02427 [00:55:20] Heider & Simmel’s Moving Shapes Experiment https://www.nature.com/articles/s41598-024-65532-0 [01:00:40] Language Models as Agent Models Jacob Andreas, 2022 https://arxiv.org/abs/2212.01681 [01:13:35] Pragmatic Understanding in LLMs Ruis et al. https://arxiv.org/abs/2210.14986

    1h 18m
  5. Jurgen Schmidhuber on Humans co-existing with AIs

    16 JAN

    Jurgen Schmidhuber on Humans co-existing with AIs

    Jürgen Schmidhuber, the father of generative AI, challenges current AI narratives, revealing that early deep learning work is in his opinion misattributed, where it actually originated in Ukraine and Japan. He discusses his early work on linear transformers and artificial curiosity which preceded modern developments, shares his expansive vision of AI colonising space, and explains his groundbreaking 1991 consciousness model. Schmidhuber dismisses fears of human-AI conflict, arguing that superintelligent AI scientists will be fascinated by their own origins and motivated to protect life rather than harm it, while being more interested in other superintelligent AI and in cosmic expansion than earthly matters. He offers unique insights into how humans and AI might coexist. This was the long-awaited second, unreleased part of our interview we filmed last time. SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? Goto https://tufalabs.ai/ *** Interviewer: Tim Scarfe TOC [00:00:00] The Nature and Motivations of AI [00:02:08] Influential Inventions: 20th vs. 21st Century [00:05:28] Transformer and GPT: A Reflection The revolutionary impact of modern language models, the 1991 linear transformer, linear vs. quadratic scaling, the fast weight controller, and fast weight matrix memory. [00:11:03] Pioneering Contributions to AI and Deep Learning The invention of the transformer, pre-trained networks, the first GANs, the role of predictive coding, and the emergence of artificial curiosity. [00:13:58] AI's Evolution and Achievements The role of compute, breakthroughs in handwriting recognition and computer vision, the rise of GPU-based CNNs, achieving superhuman results, and Japanese contributions to CNN development. [00:15:40] The Hardware Lottery and GPUs GPUs as a serendipitous advantage for AI, the gaming-AI parallel, and Nvidia's strategic shift towards AI. [00:19:58] AI Applications and Societal Impact AI-powered translation breaking communication barriers, AI in medicine for imaging and disease prediction, and AI's potential for human enhancement and sustainable development. [00:23:26] The Path to AGI and Current Limitations Distinguishing large language models from AGI, challenges in replacing physical world workers, and AI's difficulty in real-world versus board games. [00:25:56] AI and Consciousness Simulating consciousness through unsupervised learning, chunking and automatizing neural networks, data compression, and self-symbols in predictive world models. [00:30:50] The Future of AI and Humanity Transition from AGIs as tools to AGIs with their own goals, the role of humans in an AGI-dominated world, and the concept of Homo Ludens. [00:38:05] The AI Race: Europe, China, and the US Europe's historical contributions, current dominance of the US and East Asia, and the role of venture capital and industrial policy. [00:50:32] Addressing AI Existential Risk The obsession with AI existential risk, commercial pressure for friendly AIs, AI vs. hydrogen bombs, and the long-term future of AI. [00:58:00] The Fermi Paradox and Extraterrestrial Intelligence Expanding AI bubbles as an explanation for the Fermi paradox, dark matter and encrypted civilizations, and Earth as the first to spawn an AI bubble. [01:02:08] The Diversity of AI and AI Ecologies The unrealism of a monolithic super intelligence, diverse AIs with varying goals, and intense competition and collaboration in AI ecologies. [01:12:21] Final Thoughts and Closing Remarks REFERENCES: See pinned comment on YT: https://youtu.be/fZYUqICYCAk

    1h 13m
  6. Yoshua Bengio - Designing out Agency for Safe AI

    15 JAN

    Yoshua Bengio - Designing out Agency for Safe AI

    Professor Yoshua Bengio is a pioneer in deep learning and Turing Award winner. Bengio talks about AI safety, why goal-seeking “agentic” AIs might be dangerous, and his vision for building powerful AI tools without giving them agency. Topics include reward tampering risks, instrumental convergence, global AI governance, and how non-agent AIs could revolutionize science and medicine while reducing existential threats. Perfect for anyone curious about advanced AI risks and how to manage them responsibly. SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? They are hosting an event in Zurich on January 9th with the ARChitects, join if you can. Goto https://tufalabs.ai/ *** Interviewer: Tim Scarfe Yoshua Bengio: https://x.com/Yoshua_Bengio https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en https://yoshuabengio.org/ https://en.wikipedia.org/wiki/Yoshua_Bengio TOC: 1. AI Safety Fundamentals [00:00:00] 1.1 AI Safety Risks and International Cooperation [00:03:20] 1.2 Fundamental Principles vs Scaling in AI Development [00:11:25] 1.3 System 1/2 Thinking and AI Reasoning Capabilities [00:15:15] 1.4 Reward Tampering and AI Agency Risks [00:25:17] 1.5 Alignment Challenges and Instrumental Convergence 2. AI Architecture and Safety Design [00:33:10] 2.1 Instrumental Goals and AI Safety Fundamentals [00:35:02] 2.2 Separating Intelligence from Goals in AI Systems [00:40:40] 2.3 Non-Agent AI as Scientific Tools [00:44:25] 2.4 Oracle AI Systems and Mathematical Safety Frameworks 3. Global Governance and Security [00:49:50] 3.1 International AI Competition and Hardware Governance [00:51:58] 3.2 Military and Security Implications of AI Development [00:56:07] 3.3 Personal Evolution of AI Safety Perspectives [01:00:25] 3.4 AI Development Scaling and Global Governance Challenges [01:12:10] 3.5 AI Regulation and Corporate Oversight 4. Technical Innovations [01:23:00] 4.1 Evolution of Neural Architectures: From RNNs to Transformers [01:26:02] 4.2 GFlowNets and Symbolic Computation [01:30:47] 4.3 Neural Dynamics and Consciousness [01:34:38] 4.4 AI Creativity and Scientific Discovery SHOWNOTES (Transcript, references, best clips etc): https://www.dropbox.com/scl/fi/ajucigli8n90fbxv9h94x/BENGIO_SHOW.pdf?rlkey=38hi2m19sylnr8orb76b85wkw&dl=0 CORE REFS (full list in shownotes and pinned comment): [00:00:15] Bengio et al.: "AI Risk" Statement https://www.safe.ai/work/statement-on-ai-risk [00:23:10] Bengio on reward tampering & AI safety (Harvard Data Science Review) https://hdsr.mitpress.mit.edu/pub/w974bwb0 [00:40:45] Munk Debate on AI existential risk, featuring Bengio https://munkdebates.com/debates/artificial-intelligence [00:44:30] "Can a Bayesian Oracle Prevent Harm from an Agent?" (Bengio et al.) on oracle-to-agent safety https://arxiv.org/abs/2408.05284 [00:51:20] Bengio (2024) memo on hardware-based AI governance verification https://yoshuabengio.org/wp-content/uploads/2024/08/FlexHEG-Memo_August-2024.pdf [01:12:55] Bengio’s involvement in EU AI Act code of practice https://digital-strategy.ec.europa.eu/en/news/meet-chairs-leading-development-first-general-purpose-ai-code-practice [01:27:05] Complexity-based compositionality theory (Elmoznino, Jiralerspong, Bengio, Lajoie) https://arxiv.org/abs/2410.14817 [01:29:00] GFlowNet Foundations (Bengio et al.) for probabilistic inference https://arxiv.org/pdf/2111.09266 [01:32:10] Discrete attractor states in neural systems (Nam, Elmoznino, Bengio, Lajoie) https://arxiv.org/pdf/2302.06403

    1h 42m
  7. Francois Chollet - ARC reflections - NeurIPS 2024

    9 JAN

    Francois Chollet - ARC reflections - NeurIPS 2024

    François Chollet discusses the outcomes of the ARC-AGI (Abstraction and Reasoning Corpus) Prize competition in 2024, where accuracy rose from 33% to 55.5% on a private evaluation set. SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? They are hosting an event in Zurich on January 9th with the ARChitects, join if you can. Goto https://tufalabs.ai/ *** Read about the recent result on o3 with ARC here (Chollet knew about it at the time of the interview but wasn't allowed to say): https://arcprize.org/blog/oai-o3-pub-breakthrough TOC: 1. Introduction and Opening [00:00:00] 1.1 Deep Learning vs. Symbolic Reasoning: François’s Long-Standing Hybrid View [00:00:48] 1.2 “Why Do They Call You a Symbolist?” – Addressing Misconceptions [00:01:31] 1.3 Defining Reasoning 3. ARC Competition 2024 Results and Evolution [00:07:26] 3.1 ARC Prize 2024: Reflecting on the Narrative Shift Toward System 2 [00:10:29] 3.2 Comparing Private Leaderboard vs. Public Leaderboard Solutions [00:13:17] 3.3 Two Winning Approaches: Deep Learning–Guided Program Synthesis and Test-Time Training 4. Transduction vs. Induction in ARC [00:16:04] 4.1 Test-Time Training, Overfitting Concerns, and Developer-Aware Generalization [00:19:35] 4.2 Gradient Descent Adaptation vs. Discrete Program Search 5. ARC-2 Development and Future Directions [00:23:51] 5.1 Ensemble Methods, Benchmark Flaws, and the Need for ARC-2 [00:25:35] 5.2 Human-Level Performance Metrics and Private Test Sets [00:29:44] 5.3 Task Diversity, Redundancy Issues, and Expanded Evaluation Methodology 6. Program Synthesis Approaches [00:30:18] 6.1 Induction vs. Transduction [00:32:11] 6.2 Challenges of Writing Algorithms for Perceptual vs. Algorithmic Tasks [00:34:23] 6.3 Combining Induction and Transduction [00:37:05] 6.4 Multi-View Insight and Overfitting Regulation 7. Latent Space and Graph-Based Synthesis [00:38:17] 7.1 Clément Bonnet’s Latent Program Search Approach [00:40:10] 7.2 Decoding to Symbolic Form and Local Discrete Search [00:41:15] 7.3 Graph of Operators vs. Token-by-Token Code Generation [00:45:50] 7.4 Iterative Program Graph Modifications and Reusable Functions 8. Compute Efficiency and Lifelong Learning [00:48:05] 8.1 Symbolic Process for Architecture Generation [00:50:33] 8.2 Logarithmic Relationship of Compute and Accuracy [00:52:20] 8.3 Learning New Building Blocks for Future Tasks 9. AI Reasoning and Future Development [00:53:15] 9.1 Consciousness as a Self-Consistency Mechanism in Iterative Reasoning [00:56:30] 9.2 Reconciling Symbolic and Connectionist Views [01:00:13] 9.3 System 2 Reasoning - Awareness and Consistency [01:03:05] 9.4 Novel Problem Solving, Abstraction, and Reusability 10. Program Synthesis and Research Lab [01:05:53] 10.1 François Leaving Google to Focus on Program Synthesis [01:09:55] 10.2 Democratizing Programming and Natural Language Instruction 11. Frontier Models and O1 Architecture [01:14:38] 11.1 Search-Based Chain of Thought vs. Standard Forward Pass [01:16:55] 11.2 o1’s Natural Language Program Generation and Test-Time Compute Scaling [01:19:35] 11.3 Logarithmic Gains with Deeper Search 12. ARC Evaluation and Human Intelligence [01:22:55] 12.1 LLMs as Guessing Machines and Agent Reliability Issues [01:25:02] 12.2 ARC-2 Human Testing and Correlation with g-Factor [01:26:16] 12.3 Closing Remarks and Future Directions SHOWNOTES PDF: https://www.dropbox.com/scl/fi/ujaai0ewpdnsosc5mc30k/CholletNeurips.pdf?rlkey=s68dp432vefpj2z0dp5wmzqz6&st=hazphyx5&dl=0

    1h 27m
  8. Jeff Clune - Agent AI Needs Darwin

    4 JAN

    Jeff Clune - Agent AI Needs Darwin

    AI professor Jeff Clune ruminates on open-ended evolutionary algorithms—systems designed to generate novel and interesting outcomes forever. Drawing inspiration from nature’s boundless creativity, Clune and his collaborators aim to build “Darwin Complete” search spaces, where any computable environment can be simulated. By harnessing the power of large language models and reinforcement learning, these AI agents continuously develop new skills, explore uncharted domains, and even cooperate with one another in complex tasks. SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? They are hosting an event in Zurich on January 9th with the ARChitects, join if you can. Goto https://tufalabs.ai/ *** A central theme throughout Clune’s work is “interestingness”: an elusive quality that nudges AI agents toward genuinely original discoveries. Rather than rely on narrowly defined metrics—which often fail due to Goodhart’s Law—Clune employs language models to serve as proxies for human judgment. In doing so, he ensures that “interesting” always reflects authentic novelty, opening the door to unending innovation. Yet with these extraordinary possibilities come equally significant risks. Clune says we need AI safety measures—particularly as the technology matures into powerful, open-ended forms. Potential pitfalls include agents inadvertently causing harm or malicious actors subverting AI’s capabilities for destructive ends. To mitigate this, Clune advocates for prudent governance involving democratic coalitions, regulation of cutting-edge models, and global alignment protocols. Jeff Clune: https://x.com/jeffclune http://jeffclune.com/ (Interviewer: Tim Scarfe) TOC: 1. Introduction [00:00:00] 1.1 Overview and Opening Thoughts 2. Sponsorship [00:03:00] 2.1 TufaAI Labs and CentML 3. Evolutionary AI Foundations [00:04:12] 3.1 Open-Ended Algorithm Development and Abstraction Approaches [00:07:56] 3.2 Novel Intelligence Forms and Serendipitous Discovery [00:11:46] 3.3 Frontier Models and the 'Interestingness' Problem [00:30:36] 3.4 Darwin Complete Systems and Evolutionary Search Spaces 4. System Architecture and Learning [00:37:35] 4.1 Code Generation vs Neural Networks Comparison [00:41:04] 4.2 Thought Cloning and Behavioral Learning Systems [00:47:00] 4.3 Language Emergence in AI Systems [00:50:23] 4.4 AI Interpretability and Safety Monitoring Techniques 5. AI Safety and Governance [00:53:56] 5.1 Language Model Consistency and Belief Systems [00:57:00] 5.2 AI Safety Challenges and Alignment Limitations [01:02:07] 5.3 Open Source AI Development and Value Alignment [01:08:19] 5.4 Global AI Governance and Development Control 6. Advanced AI Systems and Evolution [01:16:55] 6.1 Agent Systems and Performance Evaluation [01:22:45] 6.2 Continuous Learning Challenges and In-Context Solutions [01:26:46] 6.3 Evolution Algorithms and Environment Generation [01:35:36] 6.4 Evolutionary Biology Insights and Experiments [01:48:08] 6.5 Personal Journey from Philosophy to AI Research Shownotes: We craft detailed show notes for each episode with high quality transcript and references and best parts bolded. https://www.dropbox.com/scl/fi/fz43pdoc5wq5jh7vsnujl/JEFFCLUNE.pdf?rlkey=uu0e70ix9zo6g5xn6amykffpm&st=k2scxteu&dl=0

    2 hr

Ratings & Reviews

5
out of 5
2 Ratings

About

Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).

You Might Also Like

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada