2025.07.15 | 数据集支持虚拟人生成;强化学习需防数据污染。

HuggingFace 每日AI论文速递

本期的 12 篇论文如下:

[00:24] 🗣 SpeakerVid-5M: A Large-Scale High-Quality Dataset for Audio-Visual Dyadic Interactive Human Generation(SpeakerVid-5M:用于视听二元交互式虚拟人生成的大规模高质量数据集)

[01:12] 🤔 Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination(推理还是记忆?数据污染导致强化学习结果不可靠)

[02:03] 🤖 EmbRACE-3K: Embodied Reasoning and Action in Complex Environments(EmbRACE-3K:复杂环境中的具身推理与行动)

[03:02] 🤔 REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once(REST:通过同时提问多个问题来压力测试大型推理模型)

[03:56] 🧮 Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation(递归混合:学习动态递归深度以实现自适应Token级别计算)

[04:46] 🧠 LayerCake: Token-Aware Contrastive Decoding within Large Language Model Layers(LayerCake:大语言模型层内的Token感知对比解码)

[05:39] ⚖ CompassJudger-2: Towards Generalist Judge Model via Verifiable Rewards(CompassJudger-2:基于可验证奖励的通用判别模型)

[06:27] 🎬 MoVieS: Motion-Aware 4D Dynamic View Synthesis in One Second(MoVieS:一秒内实现运动感知的四维动态视角合成)

[07:18] 🧮 A Practical Two-Stage Recipe for Mathematical LLMs: Maximizing Accuracy with SFT and Efficiency with Reinforcement Learning(数学大型语言模型的实用两阶段方案:通过监督微调最大化准确率,通过强化学习优化效率)

[08:05] 🇰 From KMMLU-Redux to KMMLU-Pro: A Professional Korean Benchmark Suite for LLM Evaluation(从KMMLU-Redux到KMMLU-Pro:用于LLM评估的专业韩国基准套件)

[09:08] 🖼 DreamPoster: A Unified Framework for Image-Conditioned Generative Poster Design(DreamPoster:一个用于图像条件生成海报设计的统一框架)

[09:54] 🖼 Favicon Trojans: Executable Steganography Via Ico Alpha Channel Exploitation(Favicon木马:通过ICO Alpha通道利用实现的可执行隐写术)

【关注我们】

您还可以在以下平台找到我们,获得播客内容以外更多信息

小红书: AI速递

如要聆聽兒童不宜的單集,請登入。

隨時掌握此節目的最新消息

登入或註冊後即可關注節目、儲存單集和掌握最新消息。

請選擇國家或地區

非洲、中東和印度

亞太

歐洲

拉丁美洲與加勒比海

美國和加拿大