Grundlagen der Automatischen Spracherkennung, WS16/17, Vorlesung

Karlsruher Institut für Technologie (KIT)
Grundlagen der Automatischen Spracherkennung, WS16/17, Vorlesung

Die Vorlesung erläutert den Aufbau eines modernen Spracherkennungssystems. Der Aufbau wird dabei motiviert ausgehend von der Produktion menschlicher Sprache und ihrer Eigenschaften. Es werden alle Verarbeitungsschritte von der Signalverarbeitung über das Training geeigneter, statistischer Modelle, bis hin zur eigentlichen Erkennung ausführlich behandelt. Dabei stehen statistische Methoden, wie sie in aktuellen Spracherkennungssystemen verwendet werden, im Vordergrund. Somit wird der Stand der Technik in der automatischen Spracherkennung vermittelt. Ferner werden alternative Methoden vorgestellt, aus denen sich die aktuellen entwickelt haben und die zum Teil noch in spezialisierten Fällen in der Spracherkennung zum Einsatz kommen. Anhand von Beispielanwendungen und Beispielen aus aktuellen Projekten wird der Stand der Technik und die Leistungsfähigkeit moderner Systeme veranschaulicht. Zusätzlich zu den grundlegenden Techniken wird auch eine Einführung in die weiterführenden Techniken automatischer Spracherkennung geben, um so zu vermitteln, wie moderne, leistungsfähige Spracherkennungssysteme trainiert und angewendet werden können. Literaturhinweise: Xuedong Huang, Alex Acero, Hsiao-wuen Hon, Spoken Language Processing, Prentice Hall, NJ, USA, 2001 Fredrick Jelinek (editor), Statistical Methods for Speech Recognition, The MIT Press,1997, Cambridge, Massachusetts, London, England.

About

Die Vorlesung erläutert den Aufbau eines modernen Spracherkennungssystems. Der Aufbau wird dabei motiviert ausgehend von der Produktion menschlicher Sprache und ihrer Eigenschaften. Es werden alle Verarbeitungsschritte von der Signalverarbeitung über das Training geeigneter, statistischer Modelle, bis hin zur eigentlichen Erkennung ausführlich behandelt. Dabei stehen statistische Methoden, wie sie in aktuellen Spracherkennungssystemen verwendet werden, im Vordergrund. Somit wird der Stand der Technik in der automatischen Spracherkennung vermittelt. Ferner werden alternative Methoden vorgestellt, aus denen sich die aktuellen entwickelt haben und die zum Teil noch in spezialisierten Fällen in der Spracherkennung zum Einsatz kommen. Anhand von Beispielanwendungen und Beispielen aus aktuellen Projekten wird der Stand der Technik und die Leistungsfähigkeit moderner Systeme veranschaulicht. Zusätzlich zu den grundlegenden Techniken wird auch eine Einführung in die weiterführenden Techniken automatischer Spracherkennung geben, um so zu vermitteln, wie moderne, leistungsfähige Spracherkennungssysteme trainiert und angewendet werden können. Literaturhinweise: Xuedong Huang, Alex Acero, Hsiao-wuen Hon, Spoken Language Processing, Prentice Hall, NJ, USA, 2001 Fredrick Jelinek (editor), Statistical Methods for Speech Recognition, The MIT Press,1997, Cambridge, Massachusetts, London, England.

More From Karlsruher Institut für Technologie

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes, and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada