47 episodes

Welcome to Faster, Please! — The Podcast. Several times a month, host Jim Pethokoukis will feature a lively conversation with a fascinating and provocative guest about how to make the world a better place by accelerating scientific discovery, technological innovation, and economic growth.

fasterplease.substack.com

Faster, Please! — The Podcast James Pethokoukis

    • Technology
    • 5.0 • 6 Ratings

Welcome to Faster, Please! — The Podcast. Several times a month, host Jim Pethokoukis will feature a lively conversation with a fascinating and provocative guest about how to make the world a better place by accelerating scientific discovery, technological innovation, and economic growth.

fasterplease.substack.com

    🚀 My chat (+transcript) with Charles Murray on Project Apollo

    🚀 My chat (+transcript) with Charles Murray on Project Apollo

    Project Apollo was a feat of human achievement akin to, and arguably greater than, the discovery of the New World. From 1962 to 1972, NASA conducted 17 crewed missions, six of which placed men on the surface of the moon. Since the Nixon administration put an end to Project Apollo, our extraterrestrial ambitions seem to have stalled along with our sense of national optimism. But is the American spirit of adventure, heroism, and willingness to take extraordinary risk a thing of the past
    Today on the podcast, I talk with Charles Murray about what made Apollo extraordinary and whether we in the 21st century have the will to do extraordinary things. Murray is the co-author with Catherine Bly Cox of Apollo: The Race to the Moon, first published in 1989 and republished in 2004. He is also my colleague here at AEI.
    In This Episode
    * Going to the moon (1:35)
    * Support for the program (7:40)
    * Gene Kranz (9:31)
    * An Apollo 12 story (12:06)
    * An Apollo 11 story (17:58)
    * Apollo in the media (21:36)
    * Perspectives on space flight (24:50)
    Below is a lightly edited transcript of our conversation

    Going to the moon (1:35)
    Pethokoukis: When I look at the delays with the new NASA go-to-the-moon rocket, and even if you look at the history of SpaceX and their current Starship project, these are not easy machines for mankind to build. And it seems to me that, going back to the 1960s, Apollo must have been at absolutely the far frontier of what humanity was capable of back then, and sometimes I cannot almost believe it worked. Were the Apollo people—the engineers—were they surprised it worked?
    Murray: There were a lot of people who, they first heard the Kennedy speech saying, “We want to go to the moon and bring a man safely back by the end of the decade,” they were aghast. I mean, come on! In 1961, when Kennedy made that speech, we had a grand total of 15 minutes of manned space flight under our belt with a red stone rocket with 78,000 pounds of thrust. Eight years and eight weeks later, about the same amount of time since Donald Trump was elected to now, we had landed on the moon with a rocket that had 7.6 million pounds of thrust, compared to the 78,000, and using technology that had had to be invented essentially from scratch, all in eight years. All of Cape Canaveral, those huge buildings down there, all that goes up during that time.
    Well, I'm not going to go through the whole list of things, but if you want to realize how incredibly hard to believe it is now that we did it, consider the computer system that we used to go to the moon. Jerry Bostick, who was one of the flight dynamics officers, was telling me a few months ago about how excited they were just before the first landing when they got an upgrade to their computer system for the whole Houston Center. It had one megabyte of memory, and this was, to them, all the memory they could ever possibly want. One megabyte.
    We'll never use it all! We'll never use all this, it’s a luxury!
    So Jim, I guess I'm saying a couple of things. One is, to the young’ins out there today, you have no idea what we used to be able to do. We used to be able to work miracles, and it was those guys who did it.
    Was the Kennedy speech, was it at Rice University?
    No, “go to the moon” was before Congress.
    He gave another speech at Rice where he was started to list all the things that they needed to do to get to the moon. And it wasn't just, “We have these rockets and we need to make a bigger one,” but there was so many technologies that needed to be developed over the course of the decade, I can't help but think a president today saying, “We're going to do this and we have a laundry list of things we don't know how to do, but we're going to figure them out…” It would've been called pie-in-the-sky, or something like that.
    By the way, in order to do this, we did things which today would be unthinkable. You would have contracts for important equipment; the whole cycle for the contract acqui

    • 27 min
    🦁 My chat (+transcript) with investment strategist Ed Yardeni on his optimism for a Roaring 2020s

    🦁 My chat (+transcript) with investment strategist Ed Yardeni on his optimism for a Roaring 2020s

    As I often remind subscribers to Faster, Please!, predictions are hard, especially about the future. The economic boom of the 1990s came as a surprise to most economists. Equally surprising was that it ended so soon. Neither of these events caught Ed Yardeni off-guard. Some forecasters, Yardeni included, anticipated a new Roaring ’20s for this century… only to be interrupted by the pandemic. But is it too late for this prediction to become a reality? According to Yardeni, not at all.
    Ed Yardeni is president of Yardeni Research, and he previously served as chief investment strategist at a number of investment companies, including Deutche Bank.  He has additionally held positions at the Federal Reserve Bank of New York, Federal Reserve Board of Governors, and US Treasury Department. For more economic insights and investment guidance, visit yardeni.com.
    In This Episode
    * The ’90s Internet boom (1:25)
    * The Digital Revolution (5:01)
    * The new Roaring ’20s (9:00)
    * A cautious Federal Reserve (14:24)
    * Speedbumps to progress (18:18)
    Below is a lightly edited transcript of our conversation
    The ’90s Internet boom (1:25)
    Pethokoukis: Statistically speaking, the PC Internet boom that you first started writing about back in the early ’90s ended in 2004, 2005. How surprising was that to economists, investors, policy makers? I, to this day, have a report, a 2000 report, from Lehman Brothers that predicted, as far as the eye could see, we would have rapid growth, rapid productivity growth for at least another decade. Now, of course, Lehman didn't make it another decade. Was that a surprise to people that we didn't have an endless productivity boom coming out of the ’90s?
    Yardeni: I think it definitely was a surprise. I mean, it was surprising both ways. Not too many people expected to see a productivity boom in the second half of the 1990s, which is what we had. I did, as an economist on Wall Street. More importantly, Alan Greenspan was a big promoter of the idea that the technology revolution would in fact lead to better productivity growth and that that might mean better economic growth and lower inflation. And it didn't look that way for a while; then suddenly the Bureau of Economic Analysis went back and revised the data for the late 1990s and, lo and behold, it turned out that there was a productivity boom. And then it all kind of fizzled out, and it raises the question, why did that happen? Why was it such a short lived productivity boom? And the answer is—well, let me give you a personal anecdote.
    I worked at Deutsche Bank in New York in the late 1990s, and I had to be very careful walking down the corridors of Deutsche Bank in midtown Manhattan not to trip over Dell boxes. Everybody was getting a Dell box, everybody was getting the Dell boxes loaded up with the Windows Office. And when you think back on what that was able to do in terms of productivity, if you had a lot of secretaries on Selectric typewriters, Word could obviously increase productivity. If you had a lot of bookkeepers doing spreadsheets, Excel could obviously increase productivity. But other than that, there wasn't really that much productivity to be had from the technology at the time. So again, where did that productivity boom come from? It couldn't have been just secretaries and bookkeepers. Now the answer is that the boxes themselves were measured as output, and so output per man hour increased dramatically. It doesn't take that many workers to produce Dell boxes and Windows Office and Windows software. So as a result of that, we had this big boom in the technology output that created its own productivity boom, but it didn't really have the widespread application to all sorts of business model the way today's evolution of the technology boom is, in fact, capable of doing.
    What you've just described, I think, is the explanation by, for instance, Robert Gordon, Northwestern University, that we saw a revolution, but it was a narrow revolution.
    I

    • 24 min
    ⚡⚛ My chat (+transcript) with Steve Obenschain of LaserFusionX on laser fusion

    ⚡⚛ My chat (+transcript) with Steve Obenschain of LaserFusionX on laser fusion

    As private and government interest in nuclear fusion technology grows, an array of startups have arisen to take on the challenge, each with their own unique approach. Among them: LaserFusionX. Today on Faster, Please!—The Podcast, I talk with CEO Stephen Obenschain about the viability of fusion energy, and what sets his approach apart.
    Obenschain is the president of LaserFusionX. He was formerly head of the Plasma Physics Division branch at the U.S. Naval Research Laboratory.
    In This Episode
    * Viability of commercial fusion (0:58)
    * The LaserFusionX approach (7:54)
    * Funding the project (10:28)
    * The vision (12:52)
    Below is a lightly edited transcript of our conversation
    Viability of commercial fusion (0:58)
    Pethokoukis: Steve, welcome to the podcast.
    Obenschain: Okay, I'm glad to talk with you. I understand you're very interested in high-tech future power sources, not so high tech right now are windmills…
    Well, I guess they're trying to make those more high tech, as well. I recall that when the Energy Department, the National Ignition Laboratory [NIF], they had the—I guess that's over about maybe 15 months ago—and they said they had achieved a net gain nuclear fusion, using lasers, and the energy secretary made an announcement and it was a big deal because we had never done that before by any means. But I remember very specifically people were saying, “Listen, it's a great achievement that we've done this, but using lasers is not a path to creating a commercial nuclear reactor.” I remember that seemed to be on the news all the time. But yet you are running a company that wants to use lasers to create a commercial fusion reactor. One, did I get that right, and what are you doing to get lasers to be able to do that?
    I don't know why people would come to that conclusion. I think we are competitive with the other approaches, which is magnetic fusion, where you use magnetic fields to confine a plasma and get to fusion temperatures. The federal government has supported laser fusion since about 1972, starting with the AEC [Atomic Energy Commission]. Originally it was an energy program, but it has migrated to being in support stockpiled stewardship because, with laser fusion, you can reach physics parameters similar to what occur in thermonuclear weapons.
    Yeah. So that facility is about nuclear weapons testing research, not creating a reactor—a fusion reactor.
    Yeah. All that being said, it does advance the physics of laser fusion energy, and what the National Ignition Facility did is got so-called ignition, where the fuel started a self-sustaining reaction where it was heating itself and increasing the amount of fusion energy. However, the gain was about three, and one of the reasons for that is they use so-called indirect drive, where the laser comes in, heats a small gold can, and the X-rays from that then that drive the pellet implosion, which means you lose about a factor of five in the efficiency. So it's limited gain you get that way.
    Your way is different. It sort of cuts out the middleman.
    Okay. The better way to go—which, we're not the only ones to do this—is direct drive, where the laser uniformly illuminates the target at the time that Livermore got started with indirect drive, we didn't have the technologies to uniformly illuminate a pellet. First at NRL [Naval Research Laboratories], and then later at University of Rochester in Japan, they developed techniques to uniformly illuminate the pellets. The second thing we're doing is using the argon fluoride laser. The argon fluoride laser has been used in lithography for many years because it's deep UV.
    The unique thing we have been trying to do—this was when I was supervising the program at the Naval Research Laboratory—was to take it up to high energy. We started years ago with a similar Krypton fluoride laser, built the largest operating target shooter with that technology, demonstrated the high repetition rate operation that you need for energy an

    • 14 min
    ☢ My chat (+transcript) with Spencer Weart on the history of nuclear energy fear

    ☢ My chat (+transcript) with Spencer Weart on the history of nuclear energy fear

    In a world facing climate change and clean energy challenges, it’s starting to look like a nuclear energy renaissance is starting to happen. That is, if we can overcome our irrational fear of nuclear. In this episode of Faster, Please! - The Podcast, I talk with Dr. Spencer Weart about the cultural influences that shaped generations of anxiety around nuclear power, and how that tide may be turning.
    Weart holds advanced degrees in both Astrophysics and History. For over three decades, he served as Director of the Center for History of Physics at the American Institute of Physics. He is the author of two children’s science books and has written or co-edited seven other books. Among his most recent is The Rise of Nuclear Fear, published in 2012.
    In This Episode
    * A history of radiation (1:05)
    * The rise of nuclear fear (7:01)
    * Anti-bomb to anti-nuclear (11:52)
    * Today’s anti-nuclear voices (20:21)
    * Changing generational attitudes (24:01)
    * Nuclear fear in today’s media (28:58)
    Below is a lightly edited transcript of our conversation
    A history of radiation (1:05)
    Pethokoukis: To what extent, when radiation was discovered at the turn of the century—and then, of course, the discovery of nuclear fission—to what extent were we already as a society primed by our cultural history to worry about radiation and nuclear power?
    Weart: Totally. Because you say radiation was discovered, presumably you're referring first to the discovery of X-rays and then, shortly after that, the discovery of what they called “atomic radiation,” we now call it “nuclear radiation.” But, of course, before that, there was the very exciting discovery of infrared radiation. And before that, people have always known about radiation: the rays, the heat from the sun; and they've always had a very powerful cultural significance. You think of the halos of rays of light going out from holy figures in Buddhism and Christian iconography, or you think of the ancient Egyptians with the life-giving rays of the sun bestowing life on things because actually, of course, radiation of the sun is life-giving, it does contain a vital life force. So it's not a mistake to think of radiation as some kind of super magical, powerful thing.
    And then of course there's also death rays. Death rays actually did become very popular in the literature after the discovery of X-rays because X-rays could, in fact, cause great damage to people, and then so could atomic rays, so, already by the early 20th century there were lots of kids' books and exciting adventure fiction featuring death rays. But you go back before that, there's the evil eye. There's rays radiating out from the evil eye could cause harm. Then there's astrology, the rays from the stars could influence human destiny. So as soon as you mention radiation, there's an enormous complex of things that come out, which was very easily linked to atomic radiation because of all the other characteristics of atomic discoveries.
    And yet, certainly in the first half or first third of the 20th century, there was, people saw radiation as having great promise, even to create a Golden Age. Tell me a bit about that.
    It came out as soon as radiation was discovered. Whenever there's a new physics discovery, almost the first thing that people think about is medical applications. And that happened with electricity and with X-rays—of course, x-rays do have great medical applications—and nuclear radiation (I'll call it “nuclear,” even though they called it “atomic” back then). Nuclear radiation did turn out to be radon and radium and so forth that Curie discovered did turn out to be useful for curing certain types of skin cancers and so forth.
    But people went much beyond that because there was all this magical stuff associated with it. We have to remember that very early on it was discovered that nuclear radiation is the product of the transmutation of elements: uranium and radium and so forth and even other elements.
    Li

    • 31 min
    🌐 My chat (+transcript) with John Bailey on the potential for AI in education

    🌐 My chat (+transcript) with John Bailey on the potential for AI in education

    Education was among the first victims of AI panic. Concerns over cheating quickly made the news. But AI optimists like John Bailey are taking a whole different approach. Today on Faster, Please! — The Podcast, I talk with Bailey about what it would mean to raise kids with a personalized AI coach — one that could elevate the efficacy of teachers, tutors, and career advisors to new heights.
    John Bailey is a colleague and senior fellow at AEI. He formerly served as special assistant to the president for domestic policy at the White house, as well as deputy policy director to the US secretary of commerce. He has additionally acted as the Director of Educational Technology for the Pennsylvania Department of Education, and subsequently as Director of Educational Technology for the US Department of Education.
    In This Episode
    * An opportunity for educators (1:27)
    * Does AI mean fewer teachers, or better teachers? (5:59)
    * A solution to COVID learning loss (9:31)
    * The personalized educational assistant (12:31)
    * The issue of cheating (17:49)
    * Adoption by teachers (21:02)
    Below is a lightly edited transcript of our conversation
    Education was among the first victims of AI panic. Concerns over cheating quickly made the news. But AI optimists like John Bailey are taking a whole different approach. Today on Faster, Please! — The Podcast, I talk with Bailey about what it would mean to raise kids with a personalized AI coach — one that could elevate the efficacy of teachers, tutors, and career advisors to new heights.
    John Bailey is a colleague and senior fellow at AEI. He formerly served as special assistant to the president for domestic policy at the White house, as well as deputy policy director to the US secretary of commerce. He has additionally acted as the Director of Educational Technology for the Pennsylvania Department of Education, and subsequently as Director of Educational Technology for the US Department of Education.
    An opportunity for educators (1:27)
    Pethokoukis: John, welcome to the podcast.
    Bailey: Oh my gosh, it's so great to be with you.
    We’d actually chatted last summer a bit on a panel about AI and education, and this is a fast moving, evolving technology. People are constantly thinking of new things to do with it. They're gauging its strengths and weaknesses. As you're thinking about any downsides of AI in education, has that changed since last summer? Are you more or less enthusiastic? How would you gauge your evolving views?
    I think I grow more excited and enthusiastic by the day, and I say that with a little humility because I do think the education space, especially for the last 20 years or so, has been riddled with a lot of promises around personalized learning, how technology was going to change your revolutionize education and teaching and learning, and it rarely did. It was over promise and under-delivered. This, though, feels like it might be one of the first times we're underestimating some of the AI capabilities and I think I'm excited for a couple different reasons.
    I just see this as it is developing its potential to develop tutoring and, just in time, professional development for teachers, and being an assistant to just make teaching more joyful again and remove some of the drudgery. I think that's untapped area and it seems to be coming alive more and more every day. But then, also, I'm very excited about some of the ways these new tools are analyzing data and you just think about school leaders, you think about principals and superintendents, and state policy makers, and the ability of being able to just have conversations with data, not running pivot tables or Excel formulas and looking for patterns and helping to understand trends. I think the bar for that has just been dramatically lowered and that's great. That's great for decision-making and it's great for having a more informed conversation.
    You're right. You talked about the promise of technology, and I know that when my kids were

    • 22 min
    🌐 My chat (+transcript) with James Walker of microreactor startup NANO Nuclear Energy

    🌐 My chat (+transcript) with James Walker of microreactor startup NANO Nuclear Energy

    Readers and listeners of Faster, Please! know how incredible the untapped potential of nuclear power truly is. As our society (hopefully) begins to warm to the idea of nuclear as an abundant, sustainable, and safe source of energy, a new generation of engineers and entrepreneurs is developing a whole new model of nuclear power: the microreactor.
    Here on this episode of Faster, Please! — The Podcast, I talk with James Walker, a nuclear physicist and CEO of NANO Nuclear Energy about the countless applications of his company’s under-development, mobile, and easily-deployable nuclear reactors.
    In This Episode
    * Why the microreactor? (1:14)
    * The NANO design plan (7:11)
    * The industry environment (11:42)
    * The future of the microreactor (13:45
    Below is a lightly edited transcript of our conversation
    Why the microreactor? (1:14)
    Pethokoukis : James, welcome to the podcast.
    Walker: I would say the way NANO got going is probably of interest, then. When we first entered the nuclear space, and my background is a nuclear physicist, nuclear engineer, so I knew that there's a very high bar to entry in nuclear and there's a lot of well-established players in the space. But, really, when we actually took a look at the whole landscape, most of the development was in the SMR space, the Kairos, the Terra Powers, the NuScales, and we could see what they were doing: They were aiming for a much more manufactural reactor that could deploy a lot faster. It was going to be a lot smaller, fewer mechanical components, smaller operating staff to bring down costs. So that all made a lot of sense, but what I think was missing in the market—and there are a few companies involved in this—was that the microreactor space looked to be the larger potential market. And I say that because microreactors are more readily deployable to places like remote mining sites, remote habitation, disaster relief areas, military bases, island communities… you put them on maritime vessels to replace bunk fuel, charging stations for EV vehicles... Essentially hundreds of thousands of potential locations competing against diesel generators, which, up until now, up until microreactors, had no competition. So the big transformative change here is—obviously SMRs are going to contribute that, but—micro reactors can completely reshape the energy landscape and that's why it's exciting. That's the big change.
    You gave some examples, so I want you to give me a couple more examples, but I'll say that I was thinking the other day about the expansion, partially due to AI, of these big data centers around the country. Is that the kind of thing—and you can give me other examples, as well—of where a much smaller microreactor might be a good fit for it, and also tell me, just how big are these reactors?
    AI centers and data centers are particularly a big focus of tech at the moment. Microsoft even have people deliberately going out and speaking to nuclear companies about being able to charge these new stations because they want these things to be green, but they also want them in locations which aren't readily accessible to the grid. And a lot of the time, some of the power requirements of these things might be bigger than the town next to them where they've got these things. So their own microreactor or SMR system is actually a really good way of solving this where it's zero carbon-emitting energy, you can put it anywhere, and it is the most consistent form of energy. Now you can out-compete diesel in that front, it can go outcompete, wind or solar. It really has no competitors. So they are leaning in that direction and a lot of the big drive in nuclear at the moment is coming from industry. So that's the big change, I think. It's not strictly now a government-pushed initiative.
    What's the difference between these and the SMR reactors, which my listeners and readers might be a little bit more familiar with?
    SMRs, the small modular reactors, obviously if you think of a large

    • 17 min

Customer Reviews

5.0 out of 5
6 Ratings

6 Ratings

Top Podcasts In Technology

Acquired
Ben Gilbert and David Rosenthal
All-In with Chamath, Jason, Sacks & Friedberg
All-In Podcast, LLC
Hard Fork
The New York Times
Lex Fridman Podcast
Lex Fridman
TED Radio Hour
NPR
Darknet Diaries
Jack Rhysider

You Might Also Like

The Ben & Marc Show
Marc Andreessen, Ben Horowitz
"Econ 102" with Noah Smith and Erik Torenberg
Noah Smith, Erik Torenberg
Conversations with Tyler
Mercatus Center at George Mason University
Dwarkesh Podcast
Dwarkesh Patel
CSPI Podcast
CSPI
EconTalk
Russ Roberts