
3.1 Estimator selection with unknown variance (Christophe Giraud)
We consider the problem of Gaussian regression (possibly in a high- dimensional setting) when the noise variance is unknown. We propose a procedure which selects within any collection of estimators, an estimator hatf that nearly achieves the best bias/variance trade off. This selection procedure can be used as an alternative to Cross Validation to : - tune the parameters of a family of estimators - compare different families of estimation procedure - perform variable selection.
Информация
- Подкаст
- Опубликовано4 декабря 2014 г. в 23:00 UTC
- Длительность56 мин.
- ОграниченияБез ненормативной лексики