OpenAI Researcher Dan Roberts on What Physics Can Teach Us About AI

Training Data

In recent years there’s been an influx of theoretical physicists into the leading AI labs. Do they have unique capabilities suited to studying large models or is it just herd behavior? To find out, we talked to our former AI Fellow (and now OpenAI researcher) Dan Roberts.

Roberts, co-author of The Principles of Deep Learning Theory, is at the forefront of research that applies the tools of theoretical physics to another type of large complex system, deep neural networks. Dan believes that DLLs, and eventually LLMs, are interpretable in the same way a large collection of atoms is—at the system level. He also thinks that emphasis on scaling laws will balance with new ideas and architectures over time as scaling asymptotes economically.

Hosted by: Sonya Huang and Pat Grady, Sequoia Capital 

Mentioned in this episode:

  • The Principles of Deep Learning Theory: An Effective Theory Approach to Understanding Neural Networks, by Daniel A. Roberts, Sho Yaida, Boris Hanin
  • Black Holes and the Intelligence Explosion: Extreme scenarios of AI focus on what is logically possible rather than what is physically possible. What does physics have to say about AI risk?
  • Yang-Mills & The Mass Gap: An unsolved Millennium Prize problem

AI Math Olympiad: Dan is on the prize committee

للاستماع إلى حلقات ذات محتوى فاضح، قم بتسجيل الدخول.

اطلع على آخر مستجدات هذا البرنامج

قم بتسجيل الدخول أو التسجيل لمتابعة البرامج وحفظ الحلقات والحصول على آخر التحديثات.

تحديد بلد أو منطقة

أفريقيا والشرق الأوسط، والهند

آسيا والمحيط الهادئ

أوروبا

أمريكا اللاتينية والكاريبي

الولايات المتحدة وكندا