Building the Silicon Brain - with Drew Houston of Dropbox
CEOs of publicly traded companies are often in the news talking about their new AI initiatives, but few of them have built anything with it. Drew Houston from Dropbox is different; he has spent over 400 hours coding with LLMs in the last year and is now refocusing his 2,500+ employees around this new way of working, 17 years after founding the company.
Timestamps
00:00 Introductions
00:43 Drew's AI journey
04:14 Revalidating expectations of AI
08:23 Simulation in self-driving vs. knowledge work
12:14 Drew's AI Engineering setup
15:24 RAG vs. long context in AI models
18:06 From "FileGPT" to Dropbox AI
23:20 Is storage solved?26:30 Products vs Features
30:48 Building trust for data access
33:42 Dropbox Dash and universal search
38:05 The evolution of Dropbox
42:39 Building a "silicon brain" for knowledge work
48:45 Open source AI and its impact
51:30 "Rent, Don't Buy" for AI
54:50 Staying relevant
58:57 Founder Mode
01:03:10 Advice for founders navigating AI
01:07:36 Building and managing teams in a growing company
Transcript
Alessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and there's no Swyx today, but I'm joined by Drew Houston of Dropbox. Welcome, Drew.
Drew [00:00:14]: Thanks for having me.
Alessio [00:00:15]: So we're not going to talk about the Dropbox story. We're not going to talk about the Chinatown bus and the flash drive and all that. I think you've talked enough about it. Where I want to start is you as an AI engineer. So as you know, most of our audience is engineering folks, kind of like technology leaders. You obviously run Dropbox, which is a huge company, but you also do a lot of coding. I think that's how you spend almost 400 hours, just like coding. So let's start there. What was the first interaction you had with an LLM API and when did the journey start for you?
Drew [00:00:43]: Yeah. Well, I think probably all AI engineers or whatever you call an AI engineer, those people started out as engineers before that. So engineering is my first love. I mean, I grew up as a little kid. I was that kid. My first line of code was at five years old. I just really loved, I wanted to make computer games, like this whole path. That also led me into startups and eventually starting Dropbox. And then with AI specifically, I studied computer science, I got my, I did my undergrad, but I didn't do like grad level computer science. I didn't, I sort of got distracted by all the startup things, so I didn't do grad level work. But about several years ago, I made a couple of things. So one is I sort of, I knew I wanted to go from being an engineer to a founder. And then, but sort of the becoming a CEO part was sort of backed into the job. And so a couple of realizations. One is that, I mean, there's a lot of like repetitive and like manual work you have to do as an executive that is actually lends itself pretty well to automation, both for like my own convenience. And then out of interest in learning, I guess what we call like classical machine learning these days, I started really trying to wrap my head around understanding machine learning and informational retrieval more, more formally. So I'd say maybe 2016, 2017 started me writing these more successively, more elaborate scripts to like understand basic like classifiers and regression and, and again, like basic information retrieval and NLP back in those days. And there's sort of like two things that came out of that. One is techniques are super powerful. And even just like studying like old school machine learning was a pretty big inversion of the way I had learned engine
Information
- Show
- FrequencyUpdated weekly
- Published18 October 2024 at 16:31 UTC
- Length1h 12m
- RatingClean