This week the topic was calculus and differentiation. We talked to Florencia Tettamanti, who’s a mathematician working on fluid dynamics. We talked about how Flo uses calculus to study the motion of fluids like air and water, and what it’s like to be a research mathematician.
Interesting links:
- Basic differentiation, at s-cool
- Differential equations, at the University of Surrey website
- Fluid dynamics on Wikipedia
- NSF videos on Fluid Mechanics - YouTube playlist
Puzzle: If your function is given by y = x2 - 6x + 13, what is the minimum value of y, and for which value of x does the function give this value?
Solution:
If you plot the points x=1, x=2, x=3 and x=4 you can clearly see the curve of this graph and that it seems to have a maximum at x=3, for which the value of y is 4. To see what the graph looks like, you can input the equation into Wolfram Alpha.
Another way to see this is to rearrange the equation: x2-6x+13 = (x-3)2+4, and by examining this equation we can see that this is just an x graph, shifted across by 3 and up by 4, so its turning point and hence the minimum will be at x=3 and y=4.
If you know how to use calculus, you can find the turning point more easily - if you differentiate x2-6x+13 you get 2x - 6, which will equal zero when x=3, and putting this value back into the original equation gives y=4.
Information
- Show
- Published22 May 2015 at 09:21 UTC
- RatingClean