你有没有想过,那些让人眼花缭乱的AI新方法,背后可能藏着同样的“武功心法”?我们又要如何像培养学徒一样,把AI训练成能炒股、会分析的“操盘手”,甚至给它请个“小助理”来把工作效率提升七倍?本期节目,我们就从几篇最新的论文出发,聊聊如何给AI“瘦身”、“加速”,并看清它究竟是全能学霸,还是个连数数都会搞错的“偏科生”。
00:00:30 AI武林秘籍:天下武功,同出一门?
00:06:02 AI炒股机器人进化论:从“学徒”到“操盘手”
00:11:49 AI模型的“瘦身”魔法:让老模型焕发新生
00:16:57 AI画画慢?给它请个“小助理”
00:22:42 给AI当“统计学老师”:学霸还是偏科生?
本期介绍的几篇论文:
[LG] Opal: An Operator Algebra View of RLHF
[Microsoft]
https://arxiv.org/abs/2509.11298
---
[LG] Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
[University of California, Los Angeles & University of Washington]
https://arxiv.org/abs/2509.11420
---
[LG] PHLoRA: data-free Post-hoc Low-Rank Adapter extraction from full-rank checkpoint
[Amazon AGI & EdgeRunner AI]
https://arxiv.org/abs/2509.10971
---
[LG] SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
[Shanghai Jiao Tong University & The Hong Kong University of Science and Technology]
https://arxiv.org/abs/2509.11628
---
[CL] Reasoning Under Uncertainty: Exploring Probabilistic Reasoning Capabilities of LLMs
[University of Maryland]
https://arxiv.org/abs/2509.10739
Information
- Show
- FrequencyUpdated Daily
- PublishedSeptember 16, 2025 at 11:29 PM UTC
- Length29 min
- RatingClean