When you think of innovative advancements in nuclear power technology, places like the Idaho National Laboratory and the Massachusetts Institute of Technology probably come to mind. But today, some very exciting nuclear power development work is being done in West Texas, specifically, at Abilene Christian University (ACU). That’s where Natura Resources is working to construct a molten salt–cooled, liquid-fueled reactor (MSR). “We are in the process of building, most likely, the country’s first advanced nuclear reactor,” Doug Robison, founder and CEO of Natura Resources, said as a guest on The POWER Podcast. Natura has taken an iterative, milestone-based approach to advanced reactor development and deployment, focused on efficiency and performance. This started in 2020 when the company brought together ACU’s NEXT Lab with Texas A&M University; the University of Texas, Austin; and the Georgia Institute of Technology to form the Natura Resources Research Alliance. In only four years, Natura and its partners developed a unique nuclear power system and successfully licensed the design. The U.S. Nuclear Regulatory Commission (NRC) issued a construction permit for deployment of the system at ACU last September. Called the MSR-1, ACU’s unit will be a 1-MWth molten salt research reactor (MSRR). It is expected to provide valuable operational data to support Natura’s 100-MWe systems. It will also serve as a “world-class research tool” to train advanced reactor operators and educate students, the company said. Natura is not only focused on its ACU project, but it is also moving forward on commercial reactor projects. In February, the company announced the deployment of two advanced nuclear projects, which are also in Texas. These deployments, located in the Permian Basin and at Texas A&M University’s RELLIS Campus, represent significant strides in addressing energy and water needs in the state. “Our first was a deployment of a Natura commercial reactor in the Permian Basin, which is where I spent my career. We’re partnering with a Texas produced-water consortium that was created by the legislature in 2021,” said Robison. One of the things that can be done with the high process heat from an MSR is desalinization. “So, we’re going to be desalinating produced water and providing power—clean power—to the oil and gas industry for their operations in the Permian Basin,” said Robison. Meanwhile, at Texas A&M’s RELLIS Campus, which is located about eight miles northwest of the university’s main campus in College Station, Texas, a Natura MSR-100 reactor will be deployed. The initiative is part of a broader project known as “The Energy Proving Ground,” which involves multiple nuclear reactor companies. The project aims to bring commercial-ready small modular reactors (SMRs) to the site, providing a reliable source of clean energy for the Electric Reliability Council of Texas (ERCOT).
資訊
- 節目
- 頻率隔週更新
- 發佈時間2025年3月4日 上午12:00 [UTC]
- 長度35 分鐘
- 年齡分級兒少適宜