Jane Ferguson: Hello, and welcome to Getting Personal, Omics of the Heart, your monthly podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson. It is August, 2019, and this is episode 31. Let's get started.
Our first paper comes from Freyja van Lint and Cynthia James, from University Medical Center Utrecht, and is entitled Arrhythmogenic Right Ventricular Cardiomyopathy-Associated Desmosomal Variants Are Rarely De Novo, Segregation and Haplotype Analysis of a Multinational Cohort. In this study, the team was interested in exploring variants that are associated with arrhythmogenic right ventricular cardiomyopathy or ARVC. ARVC is often attributable to pathogenic variants in genes encoding cardiac desmosomal proteins, but the origin of these variants had not been comprehensively studied.
The investigators identified ARVC probands meeting 2010 task force criteria from three ARVC registries in the United States and Europe and who had undergone sequencing of desmosomal genes. All 501 probands, 322 of them, or over 64%, carried a pathogenic or likely pathogenic variant in the desmosomal genes PKP2, DSP DSG2, DSC2, and JUP. The majority of these, over 75%, we're not unique with these variants occurring in more than one proband.
The team performed cascade screening and were able to identify the parental origin of almost all of the variants. However, they identified three de novo variants, including two whole gene deletions. They conducted haplotype analysis for 24 PKP2 variants across 183 seemingly unrelated families and concluded that all of these variants originated from common founders.
This analysis sheds light on the origin of variants in desmosomal genes and suggests that the vast majority of these ARVC variants originate from ancient founders with only a very small proportion of de novo variants. These data can inform clinical care particularly concerning genetic counseling and cascade screening of relatives.
The next paper continues a theme of cardiomyopathy and comes from Derk Frank, Ashraf Yusuf Rangrez, Corinna Friedrich, Sven Dittmann, Norbert Frey, Eric Schulze-Bahr and colleagues from University Medical Center Schleswig-Holstein. In this paper, Cardiac α-Actin Gene Mutation Causes Atrial-Septal Defects Associated with Late-Onset Dilated Cardiomyopathy, the team was interested in understanding the genetics of familial atrial-septal defect. They studied large multi-generational family with 78 family members and mapped a causal variant on chromosome 15q14, which caused nonsynonymous change in exon 5 of the ACTC1 gene.
Information
- Show
- PublishedAugust 27, 2019 at 6:02 PM UTC
- Length8 min
- RatingClean