Austrian Artificial Intelligence Podcast

Manuel Pasieka

Guest Interviews, discussing the possibilities and potential of AI in Austria. Question or Suggestions, write to austrianaipodcast@pm.me

  1. 68. Markus Tretzmüller - Cortecs - Europäische LLM Infrastruktur Unabhängigkeit

    23 JUIL.

    68. Markus Tretzmüller - Cortecs - Europäische LLM Infrastruktur Unabhängigkeit

    Seit Anfang des Jahres gibt es in Europa einen starkes politisches Verlangen, sich von den USA unabhängig zu machen. Dies betrifft nicht nur die aktuelle militärische Abhängigkeit, sondern auch die Abhängigkeit von US tech Unternehmen. Besonders interessant für den AAIP ist natürlich die starke abhängigkeit Europas von Amerikanischen und Chinesischen KI Modellen und der Computer Infrastruktur um diese Modelle zu nützen. Heute auf dem Podcast spreche ich mit Markus Tretzmüller, der Mitbegründer von Cortecs. Einem Österreichischen Unternehmen das es sich zum Ziel gesetzt hat, mittels eines Sky Computing Ansatzes, eine Routing Lösung zu entwickeln die es Europäischen Unternehmen ermöglicht lokale Cloud Anbieter für KI Anwendungen zu nützen. Diese ermöglicht es KI Lösungen zu entwickeln, die im Europäischen Rechtsraum operieren ohne auf die Vorteile von Hyperscalern wie Kosteneffizienz und Ausfallsicherheit verzichten zu müssen. Im Interview erzählt Markus warum es nicht reicht auf Europäische Neiderlassungen von US Unternehmen zu setzen um Unabhängigkeit und Datensicherheit zu gewährleisten, und welche Vorteile eine routing Lösung wie Cortecs bringen kann. Viel spass und spannendes zuhören. ## Referenzen - Cortecs: https://cortecs.ai/ - Building Your Sovereign AI Future - Sky computing: https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s02-stoica.pdf - RouteLLM: https://arxiv.org/abs/2406.18665 - FrugalGPT - https://arxiv.org/abs/2305.05176

    43 min
  2. 62. Marius-Constantin Dinu - extensity.ai - Building reliable and explainable AI Agent Systems

    29/10/2024

    62. Marius-Constantin Dinu - extensity.ai - Building reliable and explainable AI Agent Systems

    As you surely know, OpenAI is not very open about how their systems works or how they build them. More importantly for most uses and business, OpenAI is agnostic about how users apply their services and how to make most out of the models multi-step "reasoning" capabilities . As a stark contrast to OpenAI, today I am talking to Marius Dinu, the CEO and co-founder of the austrian startup extensity.ai. Extensity.ai as a company follows an open core model, building an open source framework which is the foundation for AI Agent systems that perform multi-step reasoning and problem solving, while generating revenue by providing enterprise support and custom implementation's. Marius will explain how their Neuro-Symbolic AI Framework is combining the strengths of symbolic reasoning, like problem decomposition, explainability, correctness and efficiency with an LLM's understanding of natural language and their capability to operate on unstructured text following instructions. We will discuss how their framework can be used to build complex multi-step reasoning workflows and how the framework works like an orchestrator and reasoning engine that applies LLM's as semantic parsers that at different decision points decide what tools or sub-systems to apply and use next. As well how in their research, they focus on ways to measure the quality and correctness of individual workflow steps in order to optimize workflow end-to-end and build a reliable, explainable and efficient problem solving system. I hope you find this episode useful and interesting. ## AAIP Community Join our discord server and ask guest directly or discuss related topics with the community. https://discord.gg/5Pj446VKNU ## TOC 00:00:00 Beginning 00:03:31 Guest Introduction 00:08:32 Extensity.ai 00:17:38 Building a multi-step reasoning framework 00:26:05 Generic Problem Solver 00:48:41 How to ensure the quality of results? 01:04:47 Compare with OpenAI Strawberry ### References Marius Dinu - https://www.linkedin.com/in/mariusconstantindinu/ https://www.extensity.ai/ Extensity.ai - https://www.extensity.ai/ Extensity.ai YT - https://www.youtube.com/@extensityAI SymbolicAI Paper: https://arxiv.org/abs/2402.00854

    1 h 15 min
  3. 61. Jules Salzinger - AIT - Building explainable and generalizable AI Systems for Agriculture

    03/10/2024

    61. Jules Salzinger - AIT - Building explainable and generalizable AI Systems for Agriculture

    Today on the podcast I have to pleasure to talk to Jules Salzinger, Computer Vision Researcher at the Vision & Automation Center of the AIT, the Austrian Institute of Technology. Jules will share with us, his newest research on applying computer vision systems that analyze drone videos to perform remote plant phenotyping. This makes it possible to analyze plants growth, but as well how certain plant decease spreads within a field. We will discuss how the diversity im biology and agriculture makes it challenging to build AI systems that generalize between plants, locations and time. Jules will explain how in their latest research, they focus on performing experiments that provide insights on how to build effective AI systems for agriculture and how to apply them. All of this with the goal to build scalable AI system and to make their application not only possible but efficient and useful. ## TOC 00:00:00 Beginning 00:03:02 Guest Introduction 00:15:04 Supporting Agriculture with AI 00:22:56 Scalable Plant Phenotyping 00:37:33 Paper: TriNet 00:70:10 Major findings ### References - Jules Salzinger: https://www.linkedin.com/in/jules-salzinger/ - VAC: https://www.ait.ac.at/en/about-the-ait/center/center-for-vision-automation-control - https://www.ait.ac.at/en/about-the-ait/center/center-for-vision-automation-control - AI in Agriculture: https://intellias.com/artificial-intelligence-in-agriculture/ - TriNet: Exploring More Affordable and Generalisable Remote Phenotyping with Explainable Deep Models: https://www.mdpi.com/2504-446X/8/8/407

    1 h 26 min

À propos

Guest Interviews, discussing the possibilities and potential of AI in Austria. Question or Suggestions, write to austrianaipodcast@pm.me