Aging-US

Aging-US Podcast

Aging-US is dedicated to advancing our understanding of the biological mechanisms that drive aging and the development of age-related diseases. Our mission is to serve as a platform for high-quality research that uncovers the cellular, molecular, and systemic processes underlying aging, and translates these insights into strategies to extend healthspan and delay the onset of chronic disease. Read about the Aging-US Scientific Integrity Process: https://aging-us.com/scientific-integrity

  1. New Single-Cell Transcriptomic Clock Reveals Intrinsic and Systemic T Cell Aging in COVID-19 and HIV

    2D AGO

    New Single-Cell Transcriptomic Clock Reveals Intrinsic and Systemic T Cell Aging in COVID-19 and HIV

    BUFFALO, NY — February 19, 2026 — A new #research paper was #published in Volume 18 of Aging-US on February 8, 2026, titled “Single-cell transcriptomics reveal intrinsic and systemic T cell aging in COVID-19 and HIV.” In this study, co-first authors Alan Tomusiak from the Buck Institute for Research on Aging and the University of Southern California, and Sierra Lore from the Buck Institute for Research on Aging and the University of Copenhagen, together with corresponding author Eric Verdin from the Buck Institute for Research on Aging, developed a new single-cell transcriptomic clock called T immune cell transcriptomic clock (Tictock) to measure aging in specific immune cells. Immune aging increases susceptibility to infection, cancer, and chronic inflammatory disease. Most aging clocks, used to measure it, rely on bulk measurements from mixed cell populations. As a result, they cannot determine whether age-related signals reflect shifts in cell proportions or true molecular aging within defined immune cells. To address this limitation, the research team used single-cell RNA sequencing, a method that measures gene expression in individual cells. They analyzed nearly two million immune cells from the blood of healthy adults to develop Tictock. This tool integrates automated classification of six canonical T cell subsets with cell-type specific age prediction models. This design enables the separation of systemic aging, reflected by changes in cell proportions, from intrinsic aging, which occurs within individual cells. When the team applied Tictock to patients with acute COVID-19, they found two clear effects. First, COVID-19 altered T cell composition, including significant reductions in naïve CD8 and naïve CD4 T cells. Second, the infection increased the biological age of naïve CD8 T cells. In people living with HIV who were receiving long-term antiretroviral therapy, T cell proportions remained largely stable. However, naïve CD8 T cells still showed signs of accelerated aging. The study also uncovered shared biological pathways linked to immune aging. Many of the genes that predicted age were involved in ribosomes, the structures that help cells produce proteins. The researchers also observed that older immune cells often had shorter average transcript lengths, a feature previously linked to aging. These findings suggest that changes in protein production and gene regulation play an important role in immune decline. “Gene Ontology enrichment of 209 genes shared across six clock models identified common pathways including the cytosolic small ribosomal subunit, TNF receptor binding, and cytosolic ribosome components.” Overall, Tictock was designed to measure relative aging within defined T cell populations rather than overall biological aging. By distinguishing systemic from cell-intrinsic immune aging, it provides a clearer understanding of how viral infections such as COVID-19 and HIV reshape immune function. This approach enables the study of immune aging at single-cell resolution and may support improved immune risk assessment in clinical and research settings. DOI - https://doi.org/10.18632/aging.206353 Corresponding author - Eric Verdin - EVerdin@buckinstitute.org Abstract video - https://www.youtube.com/watch?v=_r3AF7OrgKY Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts To learn more about the journal, please visit https://www.Aging-US.com​​. MEDIA@IMPACTJOURNALS.COM

    4 min
  2. Polyploidy-Induced Senescence May Drive Aging, Tissue Repair, and Cancer Risk

    3D AGO

    Polyploidy-Induced Senescence May Drive Aging, Tissue Repair, and Cancer Risk

    BUFFALO, NY — February 18, 2026 — A new #editorial was #published in Volume 18 of Aging-US on February 8, 2026, titled “Polyploidy-induced senescence: Linking development, differentiation, repair, and (possibly) cancer?” In this editorial, Iman M. Al-Naggar of the University of Connecticut School of Medicine, UConn Health, and the University of Connecticut Center on Aging, with George A. Kuchel of the University of Connecticut Center on Aging, examines the biological and clinical significance of polyploidy-induced senescence. The authors discuss how this process may contribute to normal tissue development and long-term repair, while also influencing cancer risk. Their perspective centers on the bladder and outlines how aging-related cellular changes may shape tumor initiation. Aging remains the strongest risk factor for bladder cancer, which is predominantly of urothelial origin. Cellular senescence is defined as a stable growth arrest in which cells remain metabolically active but no longer divide. Polyploidy refers to cells that contain extra copies of their genome. Although polyploidy is frequently associated with cancer, it also occurs in several healthy tissues as part of normal development and adaptation to stress. The editorial highlights increasing evidence that polyploidy and senescence can function together as a coordinated biological program. The authors focus on bladder umbrella cells, which form the barrier between urine and the bloodstream. In mice, these cells naturally become polyploid early in life and display markers of senescence across the lifespan. Rather than representing dysfunction, this state may help maintain tissue architecture, reinforce barrier integrity, and support resistance to environmental stress. In this context, polyploidy-induced senescence may act as a differentiation program that preserves organ structure. “Polyploidization and senescence may be interrelated stress responses, yet they have been studied mostly in isolation.” However, this protective mechanism may become unstable. Polyploidy-induced senescence depends on intact tumor suppressor pathways, including regulators such as p16. If these safeguards are lost through mutation, deletion, or epigenetic silencing, polyploid senescent cells may escape growth arrest. Re-entry into the cell cycle under these conditions may promote chromosomal instability and aneuploidy, increasing the likelihood of malignant transformation. The authors propose that a subset of bladder cancers may arise from polyploid umbrella cells that have bypassed this senescent barrier. The editorial also discusses implications for cancer therapy. Many anticancer treatments induce senescence and polyploidization in tumor cells. Although this approach can initially suppress proliferation, some polyploid cancer cells may later adapt, reduce their ploidy, and resume division, contributing to relapse and treatment resistance. Understanding how polyploidy and senescence interact may therefore inform therapeutic strategies. Overall, the authors emphasize the need to study polyploidy and senescence together rather than in isolation. Integrating ploidy assessment into large-scale mapping efforts of senescent cells may improve insight into aging biology, tumor initiation, and resistance to therapy. DOI: https://doi.org/10.18632/aging.206355 Corresponding author: Iman M. Al-Naggar - alnaggar@uchc.edu Introduction video - https://www.youtube.com/watch?v=3Cl-JoV-j0o https://www.Aging-US.com​​ MEDIA@IMPACTJOURNALS.COM

    4 min
  3. How Aging Leads to Chronic Disease: A Two-Stage Model

    4D AGO

    How Aging Leads to Chronic Disease: A Two-Stage Model

    Aging has long been explained in different ways. One traditional view is that it results from the gradual accumulation of molecular damage over time. Another perspective, based on evolutionary theory, suggests that natural selection strongly protects health during youth and reproductive years but becomes less effective later in life. As a result, biological effects that appear in older age may persist because they have little impact on reproduction. Over the past two decades, researchers have also explored the idea that biological programs beneficial early in life may continue operating later in ways that become harmful. Processes that once supported growth, repair, and reproduction may, with time, contribute to chronic disease. A recent review article, titled “Aging as a multifactorial disorder with two stages,” published in Aging-US by researchers at University College London and Queen Mary University of London, brings these different perspectives together into a unified model, to propose a broader explanation of how aging-related diseases develop. The review appears in a special issue honoring the late scientist Misha Blagosklonny, whose theoretical work on programmatic aging significantly influenced the field. Full blog - https://aging-us.org/2026/02/how-aging-leads-to-chronic-disease-a-two-stage-model/ Paper DOI - https://doi.org/10.18632/aging.206339 Corresponding author - David Gems - david.gems@ucl.ac.uk Abstract video - https://www.youtube.com/watch?v=d4TSI4Ot3yM Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206339 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, C. elegans, disease, hyperfunction, multifactorial model To learn more about the journal, please visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 X - https://twitter.com/AgingJrnl Facebook - https://www.facebook.com/AgingUS/ Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

    7 min
  4. Epigenetic Changes in Sperm May Explain Association Between Paternal Age and Autism Risk

    FEB 2

    Epigenetic Changes in Sperm May Explain Association Between Paternal Age and Autism Risk

    While maternal health has traditionally been central to research on pregnancy and child development, there is growing recognition that paternal factors also play a role, particularly the father’s age. Several studies have found a modest increase in risk of neurodevelopmental conditions, including autism spectrum disorder, among children born to older fathers. However, the biological mechanisms underlying this association are still not fully understood. One emerging explanation involves epigenetics, chemical modifications that influence how genes are expressed without altering the underlying DNA sequence. Among these is DNA methylation. Earlier studies have suggested that sperm from older men may carry age-related changes in DNA methylation, but few have explored these patterns on a genome-wide scale or focused specifically on regions that are most likely to influence offspring development. The Study: Exploring Age-Dependent Methylation at Imprint Control Regions in Human Sperm In a study, titled “Age-specific DNA methylation alterations in sperm at imprint control regions may contribute to the risk of autism spectrum disorder in offspring,” published in Aging-US and selected as the Editors’ Choice for January, 2026, researchers investigated how DNA methylation patterns in sperm change with age. The study was led by first authors Eugenia Casella and Jana Depovere, with corresponding author Adelheid Soubry from the University of Leuven. Full blog - https://aging-us.org/2026/02/epigenetic-changes-in-sperm-may-explain-association-between-paternal-age-and-autism-risk/ Paper DOI - https://doi.org/10.18632/aging.206348 Corresponding author - Adelheid Soubry - adelheid.soubry@kuleuven.be Video abstract - https://www.youtube.com/watch?v=XC3p49Uw49w Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206348 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, epigenome, sperm, 450K, imprinting, autism To learn more about the journal, please visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 X - https://twitter.com/AgingJrnl Facebook - https://www.facebook.com/AgingUS/ Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

    5 min
  5. Longevity & Aging Series (S4, E1): Fedor Galkin

    JAN 28

    Longevity & Aging Series (S4, E1): Fedor Galkin

    Senior Scientist Fedor Galkin from Insilico Medicine in Abu Dhabi, UAE, joins Dr. Evgeniy Galimov to discuss a research paper he co-authored in Volume 17, Issue 8 of Aging-US, titled “AI-driven toolset for IPF and aging research associates lung fibrosis with accelerated aging.” DOI - https://doi.org/10.18632/aging.206295 Corresponding author - Alex Zhavoronkov - alex@insilico.com Video interview - https://www.youtube.com/watch?v=PV6DyIV7X7U Abstract video - https://www.youtube.com/watch?v=24lX2lHbt7o Longevity & Aging Series - https://www.aging-us.com/longevity Abstract Idiopathic pulmonary fibrosis (IPF) is a condition predominantly affecting the elderly and leading to a decline in lung function. Our study investigates the aging-related mechanisms in IPF using artificial intelligence (AI) approaches. We developed a pathway-aware proteomic aging clock using UK Biobank data and applied it alongside a specialized version of Precious3GPT (ipf-P3GPT) to demonstrate an AI-driven mode of IPF research. The aging clock shows great performance in cross-validation (R2=0.84) and its utility is validated in an independent dataset to show that severe cases of COVID-19 are associated with an increased aging rate. Computational analysis using ipf-P3GPT revealed distinct but overlapping molecular signatures between aging and IPF, suggesting that IPF represents a dysregulation rather than mere acceleration of normal aging processes. Our findings establish novel connections between aging biology and IPF pathogenesis while demonstrating the potential of AI-guided approaches in therapeutic development for age-related diseases. Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206295 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, IPF, generative AI, transformer, proteomics To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ YouTube - https://www.youtube.com/@Aging-US Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

    47 min
  6. Chocolate Compound Linked to Slower Biological Aging

    JAN 20

    Chocolate Compound Linked to Slower Biological Aging

    When we think of aging, we often picture wrinkles or gray hair. But aging also occurs deep within our cells. One key area of research focuses on “epigenetic aging,” the gradual changes in how DNA is regulated over time. These changes are tracked using tools called epigenetic clocks, which estimate a person’s biological age based on specific molecular markers in the blood. Unlike chronological age, biological age reflects the body’s functional state and can be influenced by health, lifestyle, and environmental factors. While chocolate and coffee have been associated with better health outcomes, pinpointing the responsible specific compounds has been difficult. These foods contain multiple bioactive substances that are often consumed together, and few studies have explored their individual effects on the human epigenome, the system of chemical modifications that control gene activity and change with age. A recent study provides new insight, suggesting that theobromine, a compound naturally found in cocoa, may be associated with slower biological aging in humans. The Study: Investigating Theobromine and Epigenetic Aging in TwinsUK and KORA Cohorts The research titled “Theobromine is associated with slower epigenetic ageing,” was led by Ramy Saad from King’s College London and Great Ormond Street Hospital for Children NHS Foundation Trust, alongside Jordana T. Bell from King’s College London. The study was recently published in Aging-US. Full blog - https://aging-us.org/2026/01/chocolate-compound-linked-to-slower-biological-aging/ Paper DOI - https://doi.org/10.18632/aging.206344 Corresponding authors - Ramy Saad - ramy.saad@kcl.ac.uk, and Jordana T. Bell - jordana.bell@kcl.ac.uk Abstract video - https://www.youtube.com/watch?v=S0P1USM8L6E Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206344 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, theobromine, epigenetic aging, DNA methylation, metabolomics, nutrition To learn more about the journal, visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

    5 min
  7. How Aging Leads to Disease: New Two-Stage Model Explains Age-Related Illness

    JAN 20

    How Aging Leads to Disease: New Two-Stage Model Explains Age-Related Illness

    BUFFALO, NY — January 20, 2026 — A new #review was #published in Volume 17, Issue 12 of Aging-US on December 30, 2025, titled “Aging as a multifactorial disorder with two stages.” “This article is a contribution to the special issue of Aging celebrating the life and work of Misha Blagosklonny (more formally, Mikhail Vladimirovich Blagosklonny), who died in October 2024.” In this review, David Gems and Alexander Carver from University College London, together with Yuan Zhao from Queen Mary University of London, present a new theoretical model to explain how aging leads to the development of chronic diseases. Drawing on evolutionary theory and biological research, the authors propose that aging is driven by a combination of early-life damage and harmful genetic activity in later life. This framework helps explain why diseases such as cancer, arthritis, and infections often appear in old age and offers insight into how they might be prevented. Aging is the biggest risk factor for most chronic diseases, but the biological reasons for this association are still debated. The authors address this by introducing a two-stage model. In the first stage, individuals experience disruptions early in life, such as infections, injuries, or genetic mutations. Although the body can often contain or repair this damage, it does not fully eliminate it. In the second stage, which begins in later life, normal genetic processes begin to act in ways that are no longer beneficial. These late-life changes weaken the body’s ability to contain earlier damage, allowing it to develop into disease. The review emphasizes that aging is a multifactorial process, shaped by many interacting causes rather than a single underlying mechanism. The model suggests that early-life disruptions and later-life genetic activity work together to drive age-related diseases. For example, dormant viruses can re-emerge as infections like shingles due to weakened immunity in older adults. Similarly, injuries to joints in youth can lead to osteoarthritis as tissues change with age. Inherited mutations may also remain silent for decades before contributing to conditions such as cancer or fibrosis later in life. This two-stage model builds on long-standing ideas from evolutionary biology, particularly the theory that aging occurs because natural selection has less influence in later life. The authors also draw on studies in the roundworm Caenorhabditis elegans, where early mechanical damage can lead to fatal infections in old age, suggesting similar patterns may occur in humans. Overall, this review presents a new framework for understanding how different causes of aging interact over time. By identifying two key stages, early-life damage and late-life genetic activity, it highlights potential strategies for promoting healthier aging through prevention and targeted intervention. DOI - https://doi.org/10.18632/aging.206339 Corresponding author - David Gems - david.gems@ucl.ac.uk Abstract video - https://www.youtube.com/watch?v=d4TSI4Ot3yM Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206339 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, C. elegans, disease, hyperfunction, multifactorial model To learn more about the journal, please visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 X - https://twitter.com/AgingJrnl Facebook - https://www.facebook.com/AgingUS/ Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

    4 min
  8. Age-Related Changes in Sperm DNA May Play a Role in Autism Risk

    JAN 16

    Age-Related Changes in Sperm DNA May Play a Role in Autism Risk

    BUFFALO, NY — January 16, 2026 — A new #research paper was #published in Volume 17, Issue 12 of Aging-US on December 29, 2025, titled “Age-specific DNA methylation alterations in sperm at imprint control regions may contribute to the risk of autism spectrum disorder in offspring.” The study – selected as our Editors’ Choice for January, 2026 – was led by first authors Eugenia Casella and Jana Depovere, with corresponding author Adelheid Soubry from the University of Leuven. The research shows that a man’s age is linked to specific changes in sperm DNA that may influence early development in children. These findings are relevant as autism diagnoses have increased while many men are becoming fathers later in life. Autism spectrum disorder is a growing public health concern affecting millions of families worldwide. The study focused on DNA methylation, a natural process that helps regulate how genes function without changing the DNA sequence itself. DNA methylation plays a key role during early development and can be sensitive to age-related biological changes. Researchers analyzed sperm samples from 63 healthy, non-smoking men between the ages of 18 and 35. DNA methylation was measured at hundreds of thousands of locations across the genome. The analysis identified more than 14,000 DNA sites where methylation levels changed with age, with most showing a gradual decrease as men got older. “To identify sperm-specific marks, we conducted an epigenome-wide association study in sperm from 63 men, using the Illumina 450K array.” While individual changes were small, their location within the genome was important. Many age-related changes occurred near imprint control regions, which help ensure that certain genes are active only from one parent. These regions are established during sperm development and are usually maintained after fertilization. Disruptions in these regions may affect how genes are regulated in offspring. Researchers found that several genes affected by age-related DNA changes have previously been linked to autism. These genes are involved in brain development, nerve communication, and early growth. Changes in their regulation may increase vulnerability to neurodevelopmental differences. Overall, the findings provide new biological insight into earlier evidence linking paternal age to child health. However, the authors note that autism is a complex condition shaped by many genetic and non-genetic factors, and no single cause has been identified. The study results suggest that age-related changes in sperm DNA may be one contributing factor. By clarifying how paternal age influences sperm biology, this research supports future studies in reproductive health as family planning increasingly shifts toward later parenthood. DOI - https://doi.org/10.18632/aging.206348 Corresponding author - Adelheid Soubry - adelheid.soubry@kuleuven.be Abstract video - https://www.youtube.com/watch?v=XC3p49Uw49w Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206348 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, epigenome, sperm, 450K, imprinting, autism To learn more about the journal, please visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 X - https://twitter.com/AgingJrnl Facebook - https://www.facebook.com/AgingUS/ Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

    4 min

Ratings & Reviews

4
out of 5
2 Ratings

About

Aging-US is dedicated to advancing our understanding of the biological mechanisms that drive aging and the development of age-related diseases. Our mission is to serve as a platform for high-quality research that uncovers the cellular, molecular, and systemic processes underlying aging, and translates these insights into strategies to extend healthspan and delay the onset of chronic disease. Read about the Aging-US Scientific Integrity Process: https://aging-us.com/scientific-integrity