10 episodes

Biology is the science of the 21st Century and everyone should know the fundamentals. In this series, Professor Lindsay Turnbull from the Department of Biology will guide you through key concepts, building a big picture of what Biology is all about. Based on her recent book, this video series is perfect for GCSE or A-level students, especially those looking for a University perspective.

Biology: The Whole Story Oxford University

    • Education

Biology is the science of the 21st Century and everyone should know the fundamentals. In this series, Professor Lindsay Turnbull from the Department of Biology will guide you through key concepts, building a big picture of what Biology is all about. Based on her recent book, this video series is perfect for GCSE or A-level students, especially those looking for a University perspective.

    Ecology - Chapter 10

    Ecology - Chapter 10

    Learn the key concepts in ecology and what makes populations change over time, with Professor Lindsay Turnbull from the University of Oxford Ecology is the study of plants and animals in their environments but what kinds of questions do ecologists try to answer? We begin with a population - a group of organisms belonging to the same species that live in one place. Some populations are stable, while others boom and bust, and we find out why births and deaths are key to understanding stability. We then consider why there are so many species on Earth and in doing so discover the ecological niche that constrains organisms to a specific role. Finally, we take a quick look at humans, who have broken out of their niche and taken control of the planet.

    Erratum - Mammal biomass on Earth
    The figures given in the video are incorrect. The actual figures are: 34% humans, 62% livestock and 4% wild mammals.
    https://ourworldindata.org/wild-mammals-birds-biomass

    Timestamps:
    00:00 Intro
    00:20 Titles
    00:29 Key ecological questions
    01:18 The state of populations: births and deaths
    02:58 The rabbit versus the albatross
    04:32 Keystone species: the case of the sea otter
    06:20 Competition: the ecological niche
    08:23 Humans – the ultimate competitor?
    11:26 Outro

    • 11 min
    Plants - Chapter 9

    Plants - Chapter 9

    Plants are awesome, with photosynthesis being the most disruptive invention ever! Join Professor Lindsay Turnbull from the University of Oxford to understand why Plants don't have faces, so we don't know what they're thinking, and can even (horror!) write them off as boring. In this video, we examine the evolutionary history of the land plants: from an ancestral alga to the diversity of modern flowering plants that cover our planet today. We will see how plants stole the technology for photosynthesis - undoubtedly the most disruptive invention of all time - and how their activities changed the biosphere forever. Finally, we explore the range of features that allow a large tree in full leaf to suck up a tonne of water every day.

    Image Credit:
    Many thanks to the Oxford Herbarium for providing the slides and microscope images of the Rhynie Cherts.
    Atmospheric Carbon Dioxide Concentration Graph: NOAA Global Monitoring Lab, https://www.climate.gov/media/15554 (10/11/23)

    Timestamps:
    00:00 Intro
    00:22 Titles
    00:29 The Tragedy of Plants
    01:13 What Makes a Plant a Plant
    03:01 The Greatest Heist of All Time - Photosynthesis
    04:13 The Rhynie Cherts - Early Land Plants
    06:37 How Plants Regulate Our Climate
    07:24 How We Have Broken Our Climate
    08:45 Colour and Beauty - The Flowering Plants
    09:59 Outro

    • 10 min
    Vertebrates - Chapter 8

    Vertebrates - Chapter 8

    Take a guided tour of the biology and ancestry of the vertebrates with Professor Lindsay Turnbull from the University of Oxford Want to know more about the group of animals you belong to - the vertebrates - and how we are all descendants of a plucky fish that hauled itself onto land? In this video we discover the fishy ancestor of the vertebrates: a type of lobe-finned fish, which are extremely rare in today's oceans.

    We then explore biological scaling rules, which explain why small animals, like mice or hamsters, seem almost bionic when compared to a ponderous giant like an elephant. But vertebrates are all large animals, and their bodies must deliver oxygen and glucose to muscles buried deep within them. This has led to the evolution of some ingenious engineering solutions, like the vertebrate circulatory system.

    Timestamps:
    00:00 Intro
    00:19 Titles
    00:24 Who are the Vertebrates?
    02:01 Fishy Origins
    03:31 How Fish made it onto Land
    04:34 The Circulatory System - A Vertebrate Invention
    06:20 How Animals Get Large
    07:51 Why Animals Get Large
    09:28 Why the Vertebrates Left the Seas
    09:59 Outro

    • 10 min
    Animals - Chapter 7

    Animals - Chapter 7

    Take a whistle-stop tour of the Animal Kingdom with Professor Lindsay Turnbull from the University of Oxford Everyone can name a few animals - but did you know that most familiar animals only come from one group - and there's more than 30 to choose from?! In this video we discover the probable ancestor of the animals - a strange type of eukaryotic cell that fed on bacteria. But around 540 million years ago the animals experienced a burst of creativity, and a whole range of different animals sprang into being in the blink of a geological eye. We take a look at a few of the major groups - including arthropods, annelid worms and molluscs - which all play host to thousands of species.

    Image Credit:
    Cartwright et al (2007), Exceptionally Preserved Jellyfishes from the Middle Cambrian
    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001121

    Timestamps:
    00:00 Intro
    00:14 Titles
    00:18 When the Animals Go Marching
    02:01 What Makes an Animal an Animal?
    04:17 The Jelly Animals
    06:00 How Muscles Have Evolved
    07:45 Lines of Symmetry
    09:48 Chordates - How Our Ancestor Evolved
    11:33 Outro

    • 12 min
    Eukarotyes - Chapter 6

    Eukarotyes - Chapter 6

    Explore the mysterious origins of the cells all multicellular organisms are made from - eukaryotic cells - with Professor Lindsay Turnbull from the University of Oxford Everyone sometimes thinks they're special, but have you ever learned the truth of how special the cells in your body are? In this video we discover the 'ancient ones', a group of cells called the archaea, and the special role they play in the evolution of eukaryotes. Eukaryotic cells are generally large and full of internal structures, called organelles, one of which, the famous mitochondria, isn't quite what it seems. Finally, we look how slime moulds can gang up when conditions are right, giving us a glimpse of how true multicellularity evolved.

    Links to material used in this video:
    Rogers et al. (2012) The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography
    https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001234

    Imachi et al. (2020) Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020). https://doi.org/10.1038/s41586-019-19...
    Image credit: Hiroyuki Imachi, Masaru K. Nobu,Nozomi Nakahara,Yuki Morono, Miyuki Ogawara, Yoshihiro Takaki, Yoshinori Takano, Katsuyuki Uematsu, Tetsuro Ikuta, Motoo Ito, Yohei Matsui, Masayuki Miyazaki, Kazuyoshi Murata, Yumi Saito, Sanae Sakai, Chihong Song, Eiji Tasumi, Yuko Yamanaka, Takashi Yamaguchi, Yoichi Kamagata, Hideyuki Tamaki, and Ken Takai
    This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
    https://creativecommons.org/licenses/by-sa/4.0/deed.en

    Timestamps:
    00:00 Intro
    00:17 Titles
    00:22 Bacteria and Eukaryotes
    01:44 The Ancient Ones
    03:05 Inside Eukaryotes
    06:02 The Mysteries of the Mitochondria
    07:32 How Eukaryotes (probably) Evolved
    09:33 Multicellularity in Eukaryotes
    10:50 Outro

    • 11 min
    Bacteria - Chapter 5

    Bacteria - Chapter 5

    Learn about the microbiome, the amazing flexibility of bacteria, and why we have an antibiotic resistance crisis with Professor Lindsay Turnbull from the University of Oxford Have you ever wondered what bacteria do for you? Bacteria are the ultimate survivors and brilliant at adapting to a changing environment. By turning genes on and off - known as gene expression - they can change the tools and machinery that they produce, so they can deal with different foodstuffs.

    Bacteria also carry extra bits of DNA, called plasmids, that carry genes that allow bacteria to cope with unusual situations. Genes for antibiotic resistance are often carried on plasmids and this means they can easily be passed around, leading to the current crisis.

    Timestamps:
    00:00 Intro
    00:24 Titles
    00:29 The Microbiome
    01:51 E.coli and gene expression
    03:34 Gene expression in detail (the lac operon)
    04:53 Plasmids and the antibiotic resistance crisis
    06:49 Antibiotic use in livestock
    08:30 What bacteria can't do
    09:05 Outro

    • 9 min

Top Podcasts In Education

The Mel Robbins Podcast
Mel Robbins
The Jordan B. Peterson Podcast
Dr. Jordan B. Peterson
The Rich Roll Podcast
Rich Roll
Mick Unplugged
Mick Hunt
Digital Social Hour
Sean Kelly
The Daily Stoic
Daily Stoic | Wondery

You Might Also Like