Class 12 B: Lecture - Design Algorithm & Optimization

NJ's Computation for Design

These sources, primarily drawn from a lecture on design algorithms and optimization, introduce algorithmic thinking as a method for tackling design challenges. They discuss bottom-up approaches that build from foundational data structures and algorithms, contrasting them with top-down approaches that start with the design problem itself. The lecture explains both deterministic algorithms, which yield consistent results, and stochastic methods, which incorporate randomness, as valuable tools for finding optimal or best solutions. Crucially, the sources emphasize the need for quantifiable metrics and objective functions to evaluate and optimize designs, illustrating these concepts through real-world examples and the notion of the Pareto front, which defines the boundary of optimal design parameters.

https://namjulee.github.io/njs-lab-public/work?id=2025-introductionToDesignComputation

若要收听包含儿童不宜内容的单集,请登录。

关注此节目的最新内容

登录或注册,以关注节目、存储单集,并获取最新更新。

选择国家或地区

非洲、中东和印度

亚太地区

欧洲

拉丁美洲和加勒比海地区

美国和加拿大